## Hydroacoustic Measurements During Pile Driving at the Hood Canal Bridge, September Through November 2004


T. J. Carlson
G. R. Ploskey
D. L. Woodruff
M. A. Weiland
G. E. Johnson
J. A. Southard
N. P. Kohn
S. L. Southard

Battelle Marine Sciences Laboratory
Sequim, Washington

November 2005
Prepared for the
Washington State Department of Transportation

Battelle Memorial Institute
Pacific Northwest Division

## LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

This document was printed on recycled paper
(9/2003)

# Hydroacoustic Measurements During Pile Driving at the Hood Canal Bridge, September Through November 2004 

T. J. Carlson<br>D. L. Woodruff<br>G. E. Johnson<br>G. R. Ploskey<br>N. P. Kohn<br>J. A. Southard<br>S. L. Southard

Battelle Marine Sciences Laboratory
Sequim, Washington

November 2005

Prepared for the
Washington State Department of Transportation

Battelle Memorial Institute
Pacific Northwest Division
Richland, Washington 99352

## Executive Summary

This report provides data describing underwater sound-pressure levels during pile driving operations at the Hood Canal Bridge throughout the fall of 2004. The data characterize sound generated by single pile-driving hammer impacts, multiple successive hammer impacts, and a complete pile driving event under a variety of water depth, pile type, and sound mitigation conditions. To mitigate sound, the construction contractor was required to deploy a bubble curtain: a dense column of very fine bubbles used to decrease the sound energy and modify the sound spectrum by repeated reflection between the bubbles and the pile. A subset of plumb and batter piles was monitored without the bubble curtain in place to compare the sound signals from piles driven with or without sound mitigation. The hydroacoustic data acquisition system consisted of three hydrophones connected to a digital spectrum analyzer with a sampling rate of 48,000 samples per second. The hydrophones were placed along a floating line at three distances from the pile being monitored, at approximately mid-water column depth. At each deployment, hydrophone function was tested and calibrated prior to data collection. Data acquisition was initiated before the pile-driving event and was terminated after pile driving ceased to ensure that all of the pile-driving hammer impact events were recorded and available for analysis.

Peak and root mean square (RMS) sound pressure varied between piles and was also quite variable over the duration of driving individual piles. Sound pressure varied from peak positive pressure of $15,525 \mathrm{~Pa}$ to peak negative pressure of $-24,491 \mathrm{~Pa}$. The median peak positive and peak negative values for all plumb pile impacts were 5,952 Pa and -6,580 Pa. There was a distinct decrease in sound-pressure levels with increased distance of hydrophones from the pile due to shallow-water sound propagation factors, including attenuation and geometric spreading. Observed sound pressures were, in general, lower for batter piles than for plumb piles. Sound-pressure data were evaluated relative to the threshold values set for the protection of marine life by the National Oceanic and Atmospheric Administration Fisheries and the U. S. Fish and Wildlife Service for Hood Canal Bridge and related Washington State Department of Transportation pile-driving projects. The threshold value for peak pressure is $180 \mathrm{~dB} / / \mu \mathrm{Pa}$, which is equal to $1,000 \mathrm{~Pa}$. This peak-pressure threshold was exceeded for more than $95 \%$ of all impacts to plumb piles at all distances, including 50 m to 60 m from the piling. Although the observed sound pressures were lower at batter piles, the peak-pressure threshold was exceeded for more than $90 \%$ of impacts for batter piles except at the farthest distance from the piling, where the threshold was exceeded for more than $60 \%$ of impacts. The RMS pressure threshold is 31.6 Pa , which was exceeded in more than $95 \%$ of all batter and plumb pile hammer impacts. The peak and RMS pressure thresholds were exceeded most of the time for both plumb and batter piles driven with or without a bubble curtain.

There were no clear or obvious patterns in the sound-level data that would distinguish sound production from pile driving with or without a bubble curtain in place. The construction schedule and nature of the bubble curtain device did not allow comparison of conditions with and without the bubble curtain when monitoring an individual pile, which would have allowed for control of some variables. Designing a study to adequately evaluate mitigation effectiveness is challenging at best, because pile driving is a dynamic process, and sound production is a function of many factors, including substrate type, water depth, type of pile, and type of mitigation device (if employed). Although the study as conducted was effective for evaluating sound levels relative to marine life protection thresholds, the monitoring was not designed to evaluate the performance of mitigation devices in any comprehensive manner.

## Acknowledgements

This work could not have been accomplished without habitat biologist Carl Ward and Hood Canal Bridge environmental compliance manager Tom Cushman of the Washington State Department of Transportation. Logistics coordination with the construction contractors was provided by Max Brown of Kiewit General Construction. The authors also gratefully acknowledge Gary Dennis, Brian Gruendell, and Greg Williams for their assistance with vessel operation and hydrophone field deployments; Nathan Evans for graphics support; Chris May for document review; and Blythe Barbo for document editing and production assistance.

## Glossary

| cfm | cubic feet per minute |
| :--- | :--- |
| DAT | digital audio tape |
| GPS | global positioning system |
| NOAA | National Oceanic and Atmospheric Administration |
| Pa | Pascal sound-pressure levels |
| psi | pounds per square inch |
| RMS | root mean square |
| SAS | Statistical Analysis Systems |
| scfm | standard cubic feet per minute |
| USFWS | United States Fish and Wildlife Service |
| WSDOT | Washington State Department of Transportation |

## Contents

Executive Summary ..... iii
Acknowledgements ..... iv
Glossary .....  V
1.0 Introduction ..... 1
2.0 Methods ..... 5
2.1 Hydroacoustic Data Collection ..... 5
2.1.1 Pile-Driving Hammer ..... 5
2.1.2 Sound Measuring Equipment ..... 6
2.1.3 Hydrophone Array ..... 6
2.1.4 Collection Protocol ..... 6
2.2 Hydroacoustic Data Analysis ..... 8
3.0 Results ..... 9
3.1 Hydrophone In-Field Operation Validation ..... 9
3.2 Characteristics of Underwater Sound Impulses Generated by Pile Driving ..... 15
3.2.1 Sound Pressure - Single Impacts ..... 15
3.2.2 Sound Pressure - Successive Hammer Impacts ..... 17
3.2.3 Sound Pressure - Complete Pile-Driving Event ..... 18
3.2.4 Impulsive Sound Energy Characteristics ..... 22
3.3 Comparison of Measured and Threshold Sound Pressures ..... 26
3.4 Assessment of Bubble Curtain Effectiveness ..... 26
4.0 Discussion ..... 30
5.0 Conclusions and Recommendations ..... 32
6.0 References ..... 33

## Appendixes

Appendix A. Plots of Sound-Pressure Levels Over Time for Each Pile-Driving Event ..... A. 1
Appendix B. Tabulated Distribution Statistics of Impulse Sound Metrics for Each Pile- Driving Event ..... B. 1
Appendix C. Plots Showing Root Mean Square Pressure, Peak Positive Pressure, and Peak Negative Pressure at Each Sampled Impact for Each Pile ..... C. 1
Appendix D. Distribution of Root Mean Square Pressure, Peak Positive Pressure, and Peak Negative Pressure for Each Pile-Driving Event ..... D. 1
Appendix E. Plots of Spectral Density (Sound Energy) at Each Hydrophone for Each Pile ..... E. 1
Appendix F: Bubble Curtain Design and Specification Information... ..... F. 1

## Figures

Figure 1. Aerial View of Hood Canal Bridge Showing Eastern Bridge Terminus where
Hydroacoustic Data Collection Occurred .....  2

Figure 2. Photograph of Hood Canal Bridge Study Site Showing Temporary Work
Trestle Below Eastern Approach of Main Bridge Span at Low Tide .....  3
Figure 3. Plumb and Batter Piles Supporting Temporary Work Trestle at the Eastern Approach of the Hood Canal Bridge ..... 3
Figure 4. Impact Pile-Driving Hammer Used to Drive Monitored Piles .....  5
Figure 5. Diagram of Hydroacoustic Monitoring System .....  6
Figure 6. Schematic Plan View of Hydrophone Array .....  7

Figure 7. Hydrophone Array Deployment: 1) hydrophones and floats in vessel ready to deploy along floating backbone line; 2) floating backbone line extending parallel to shore from piling; 3) deployed hydrophone float connected to data acquisition system; and 4) shipboard data acquisition system 7

Figure 8. Locations of Plumb and Batter Piles Monitored With or Without Sound Mitigation (Bubble Curtain) During Hydroacoustic Monitoring Study, Eastern Approach of the Hood Canal Bridge11

Figure 9. Sound-Pressure Levels Measured for a Single Impact of Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)16

Figure 10. Sound-Pressure Levels Measured for a Single Impact of Batter Pile 178 Driven in 37 ft of Water without Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)16

Figure 11. Sound-Pressure Levels Measured over Successive Impacts for Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)17

Figure 12. Sound-Pressure Levels Measured over Successive Impacts of Batter Pile 178 Driven in 37 ft of Water Without Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)18

Figure 13. Sound-Pressure Levels (Pa) Measured for Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place. H1 (bottom plot), H2 (middle plot), and H3 (top plot) were approximately 64.7, 89.1, and 154.8 ft from the pile, respectively.21

Figure 14. Sound-Pressure Levels (Pa) measured for batter pile 178 driven in 37 ft of water with no bubble curtain. H1 (bottom plot), H2 (middle plot), and H3 (top plot).21

Figure 15. Example of Plots of Spectral Density Indices ( $\mathrm{Pa}^{2} / \mathrm{Hz}$ ) versus Frequency ( Hz ) at Each Hydrophone (H1, H2, H3 from left to right) for First 20 Impacts on Plumb Piles 172, 171, and 23823

Figure 16. Power Spectral Density Indices (Figure 16a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 16b)for a Single Pile-Driving Impact Measured at Plumb Pile 255, Driven in 33ft of Water with Bubble Curtain.24
Figure 17. Power Spectral Density Indices (Figure 17a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 17b) for a Single Pile-Driving Impact Measured at Plumb Pile 50N, Driven in 40 ft of Water Without Bubble Curtain. ..... 25
Figure 18. Power Spectral Density Indices (Figure 18a: H1 top plot, H2 middle plot,H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 18b)for a Single Pile-Driving Impact Measured at Plumb Pile 238, Driven in 7 ftof Water with Bubble Curtain27
Figure 19. Power Spectral Density Indices (Figure 19a: H1 top plot, H2 middle plot,H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 19b)for a Single Pile-Driving Impact Measured at Plumb Pile 240, Driven in 9 ftof Water Without Bubble Curtain.28
Tables
Table 1. Piles Monitored at Hood Canal Bridge in Fall 2004 ..... 10
Table 2. Results of System Performance Measurements Compared with Expected Values ..... 12
Table 3. Cumulative Distribution Statistics for Background Peak Sound Pressure ..... 13
Table 4. Cumulative Distribution Statistics for Background Root Mean Square Sound Pressure ..... 14
Table 5. Summary Statistics for Peak Positive Pressure and RMS Pressure for Each Monitored Pile-driving event ..... 19
Table 6. Percentage of Impacts at each Hydrophone that Exceeded Threshold Values for Protection of Marine Life ..... 29
Table 7. Summary Statistics for Transmission Loss Rates Between Hydrophones 1 and 3 ..... 30

### 1.0 Introduction

Battelle Pacific Northwest Division conducted hydroacoustic measurement of sound-pressure levels during the driving of steel piles used to construct a temporary work trestle at the eastern approach of the Hood Canal Bridge near Port Gamble, Kitsap County, Washington (Figure 1, Figure 2). This work was conducted as part of the bridge project to address the potential effects of underwater sounds and sound energy on fish and diving birds in a nearshore marine environment. The goal of the hydroacoustic study was to assist WSDOT in meeting resource agency conditions for Hood Canal Bridge construction activities by providing data describing the underwater sound-pressure levels that occurred during pile driving at the site. The Hood Canal Bridge construction site offered an opportunity to conduct a hydroacoustic study during pile driving where differing pile types, water depths, substrate types, tides, and current conditions could all affect underwater sound.

Steel piles were driven with a diesel impact hammer, which, as opposed to wood or concrete piles driven by other means such as a vibratory hammer, required hydroacoustic monitoring unless a bubble curtain were used to mitigate sound (Biological Opinion FWS Reference 1-2-02-F-1484; NOAA Reference 2002-00546). Although the construction contractor deployed a bubble curtain for most piles driven, WSDOT requested that Battelle collect data on underwater sound-pressure levels from a subset of piles with and without the bubble curtain in place, to capture any differences in sound pressures from this type of sound-mitigation device. Both plumb and batter piles used for the temporary work trestle were of steel pipe with a wall thickness of 0.5 in.; the 24 -in. diameter plumb piles were driven vertically into the substrate, whereas the 16 -in. diameter batter piles were driven into the substrate at an angle (Figure 3).

The bubble curtains employed for sound mitigation were generated by pumping air under pressure to one or more diffusers in a ring around the pile, with the goal of completely surrounding the pile with a dense curtain of small bubbles. Bubble curtains are intended to confine a portion of the sound energy generated by the impact of a pile-driving hammer on a pile between the pile and the bubble curtain. Sound energy confined in this manner should decrease and become spectrally modified as it is repeatedly reflected between the bubbles and the pile. Bubble curtain designs employed by the WSDOT contractor at the Hood Canal Bridge site are discussed in more detail in Section 3, Results, Section 4, Discussion, and Appendix F.

As noted above, the goal of the hydroacoustic study was to characterize the underwater sound environment for a range of conditions: various water depths, different pile types, and with and without sound mitigation. The planned specific objectives of the hydroacoustic study were as follows:

- In consultation with WSDOT and the pile driving contractor, select piles to monitor in advance; randomly select approximately one pile in three to monitor in the absence of a bubble curtain.
- Acquire a complete digital tape recording of all pile-driving impact events for the monitored piles and post-process acquired data to estimate 1) the peak pressure for each impact event and 2 ) the root-mean-squared (RMS) underwater sound-pressure level of each impact event.
- Report the observed peak pressure and RMS sound-pressure levels in the form of plots for each monitored pile. In addition, report aggregated peak pressure and pressure levels for monitored piles with and without bubble curtains for each set of piles and for all monitored piles.


Figure 1. Aerial View of Hood Canal Bridge Showing Eastern Bridge Terminus where Hydroacoustic Data Collection Occurred


Figure 2. Photograph of Hood Canal Bridge Study Site Showing Temporary Work Trestle Below Eastern Approach of Main Bridge Span at Low Tide


Figure 3. Plumb (vertical, 24 -in. diameter) and Batter (angled, 16 -in. diameter) Piles Supporting Temporary Work Trestle at the Eastern Approach of the Hood Canal Bridge

Additional data analysis objectives were added later to address agency concerns regarding threshold levels for protection of marine life, as follows. First, the characteristics of the sound impulses produced by impact pile driving were described in detail, including a) a schedule of the piles at which sound levels were measured, b) characterization of sound generated by single impacts, c) characterization of sound generated by 7 to 10 successive impacts, d) characterization of sound generated by a total pile-driving event, and e) frequency distribution. Secondly, the hydroacoustic data were analyzed to determine the percentage of pile-driving impact sound impulses that exceeded NOAA Fisheries threshold levels for protection of marine species. These threshold levels are expressed as peak positive sound-pressure levels and RMS sound-pressure levels. The units for both peak positive and RMS sound pressure are decibels re 1 microPascal, or $\mathrm{dB} / / \mu \mathrm{Pa}$, which can be converted to common pressure units of Pascals ( Pa ) by the equation $\mathrm{dB}=20 * \log _{10}(\mathrm{~Pa} * 1.0 E+6)$. Protective threshold levels provided by NOAA Fisheries for WSDOT pile-driving projects were $150 \mathrm{~dB}_{\mathrm{Rms}} / / \mu \mathrm{Pa}(31.6 \mathrm{~Pa}$ ) for fewer than $50 \%$ of pile-driving hammer impacts, and $180 \mathrm{~dB}_{\text {PEAK }} / / \mu \mathrm{Pa}(1000 \mathrm{~Pa})$ for all hammer impacts.

This report covers hydroacoustic measurements collected during pile driving at the eastern approach of the Hood Canal Bridge on September 2-3, October 27-28, and November 10-12, 2004. As the project progressed, it became clear that the sample design of pilings selected in advance could not be implemented as planned because of significant logistical challenges, including but not limited to the contractor's changing work schedule, weather, and pile-driving equipment failures. Rather, the piles where hydroacoustic data were collected were "piles of opportunity" selected according to the contractor's schedule, the type and location of the pile being driven, and weather and tide conditions. After the first round of data collection in September, the contractor was required by WSDOT to modify their sound-mitigation device and deployment because the bubble curtain was not being operated according to specifications. The concerns the contractor was asked to address were to ensure that: 1 ) the pile sleeve/bubble curtain was in contact with the substrate; 2 ) the top of the pile sleeve was above the water surface; 3 ) sufficient spacers were installed to keep the pile centered in the sleeve; and 4) the air supply system delivered 320 standard cubic feet per minute (scfm) at 100 pounds per square inch (psi). Several of these issues were easy for the contractor to address and implement, such as the addition of spacers and keeping the top of the pile sleeve above the water surface. Others were difficult to implement (consistent air supply at appropriate pressure) and/or observe (pile sleeve in contact with substrate). The hydroacoustic study resumed in late October, and ultimately, the total number of pilings monitored was greater than the original 15 planned. A total of 5 piles were monitored in September ( 3 with the bubble curtain and 2 without), and a total of 16 piles were monitored in October and November ( 13 with the bubble curtain and 3 without). A complete digital recording was obtained for all pile-driving impact events at each monitored piling, as planned, and the data were post-processed to provide a complete characterization of sound-pressure and sound-energy levels for each pile-driving event, also as planned.

Hydroacoustic data collection equipment, field deployment procedures, data processing, and data analysis methods are provided in Section 2 of this report. Results of hydroacoustic data collection, presented as sound-impulse characterization of a single pile-driving impact through a series of impacts to an entire pile-driving event, are presented in Section 3, along with an analysis of the data relative to marine life protection thresholds and bubble-curtain performance. Section 4 provides a discussion of sound-impulse characteristics as they relate to marine life exposure under the monitoring conditions and a summary evaluation of the hydroacoustic study design. Finally, conclusions and recommendations are provided in Section 5 and references in Section 6. Hydroacoustic data are presented in graphic and tabular form in Appendices A through E. Information on bubble-curtain design and specifications is provided in Appendix F.

### 2.0 Methods

### 2.1 Hydroacoustic Data Collection

### 2.1.1 Pile-Driving Hammer

Underwater sound pressures generated by pile driving are influenced by the pile type, substrate, depth of penetration, and wetted length of the pile. The depth of penetration into the substrate is determined by the pile-driving hammer; therefore, it is important to note the type, weight, and energy input of the hammer that was used during hydroacoustic data acquisition. The pile-driving hammer used on this project was an American Pile Driving Equipment, Inc. (APE) Model D46-32 diesel hammer (Figure 4). The hammer weighed $23,860 \mathrm{lbs}$ with a ram weight of $10,143 \mathrm{lbs}$. The speed of delivery varies from 37 to 53 blows per minute but was generally 37 to 38 blows per minute for this project. The maximum energy range setting of $4(107,172 \mathrm{ft}-\mathrm{lbs})$ was used for all plumb piles that were monitored, with the exception of pile 252 , for which the impact setting was 3 ( $88,952 \mathrm{ft}-\mathrm{lbs}$ ). An impact setting of 2 ( $70,733 \mathrm{ft}-\mathrm{lbs}$ ) was used on all batter piles that were monitored.


Figure 4. Impact Pile-Driving Hammer Used to Drive Monitored Piles

### 2.1.2 Sound Measuring Equipment

Underwater sound pressures were measured with a hydroacoustic data collection system (Figure 5). The system included three Bruel \& Kjaer model 8104 hydrophones connected through Dytran Instruments, Inc., Model M4705AM 1mV/pC in-line charge amplifiers to a Dactron Focus II 4-channel digital spectrum analyzer. Data collection and anti-aliasing filtering were controlled by Dactron RT Pro Focus software. The data were written to a laptop computer. Signals from the hydrophones were saved to a Sony PC216Ax 16-channel digital audio tape (DAT) recorder. The digitizing sampling rates of the Focus II spectrum analyzer and the Sony DAT recorder were 48,000 and 24,000 samples per second, respectively.


Figure 5. Diagram of Hydroacoustic Monitoring System

### 2.1.3 Hydrophone Array

Three hydrophones were deployed along a floating line, called the backbone, extending parallel to shore from the proximity of the pile being driven (Figure 6 and 7). The backbone was tied off at or near the pile being driven. The first hydrophone (H1) was placed approximately $33 \mathrm{ft}(10 \mathrm{~m})$ from the tie-off point. The second hydrophone (H2) was deployed along the backbone $33 \mathrm{ft}(10 \mathrm{~m})$ from H 1 , and the third hydrophone (H3) was deployed $131 \mathrm{ft}(40 \mathrm{~m})$ from H2. The backbone line was then pulled taught with a boat. Thus, H1, H2, and H3 were nominally located 33, 66, and $197 \mathrm{ft}(10,20$, and 60 m ) from the pile being monitored, respectively. These distances were not exact due to shifting currents and the logistics of hydrophone placement. Global positioning system (GPS) positions of the three hydrophones were recorded prior to each pile being driven to estimate the actual distance from the pile for each hydrophone; however, these data were not used because of movement in hydrophone location during the monitoring events. The hydrophone cables were connected to the data collection system aboard the Battelle research vessel, $R / V$ Strait Science.

### 2.1.4 Collection Protocol

Prior to data collection, the function of the hydrophones were tested by comparing measurements made in the field at the time of deployment using a Bruel \& Kjaer type 4229 pistonphone hydrophone calibrator with the factory hydrophone calibration receiving response provided by the manufacturer. During each day of field work prior to hydrophone deployment, each hydrophone was inserted into the pistonphone and the through-system performance of the data acquisition system for each hydrophone assessed. A calibration file was collected for each hydrophone, then processed and analyzed. Through-system time and frequency domain measurements were compared with pistonphone performance specifications and factory calibration. This testing also evaluated the performance of the digital spectrum analyzer and DAT recorder. Following field calibration checks, background underwater sound-pressure measurements were


Figure 6. Schematic Plan View of Hydrophone Array


Figure 7. Hydrophone Array Deployment: 1) hydrophones and floats in vessel ready to deploy along floating backbone line; 2) floating backbone line extending parallel to shore from piling; 3) deployed hydrophone float connected to data acquisition system; and 4) shipboard data acquisition system
made prior to piles being driven to document ambient background noise, providing a baseline reference for analysis of pile-driving impulse sound observations. Data acquisition was initiated approximately 2 minutes prior to the start of a pile-driving event and terminated after pile driving had ceased. This procedure ensured that all of the impact events for each pile were recorded and available for analysis.

### 2.2 Hydroacoustic Data Analysis

Sound pressure impulse signal data were analyzed for all monitored piles. Because of the large amount of data and number of impacts to be analyzed, processing was automated using custom Statistical Analysis Systems (SAS) programs. The beginning of an impact signal for automated processing purposes was identified by the absolute change in pressure of $500 \mathrm{~Pa}(500 \mathrm{mV})$ over the time of 12 samples ( $4.2 E-5 \mathrm{sec}$ ). This initial point and the following 0.8 sec was included as part of an impact event. For the purpose of data analysis, event duration was standardized at 0.8 sec. This duration was shorter than the shortest time between impact events, but longer than the typical time for attenuation of the reverberation from the impact. This criterion permitted automated detection and extraction of impact events from acquired data.

Selection of an impulse analysis interval of 0.8 sec was the product of an examination of the effect of the length of impulse analysis interval on computations sensitive to analysis interval. Longer and shorter impulse analysis intervals were analyzed to determine the effect of impulse length on results of various calculations. We examined the effects of duration extremes by evaluating the effects of impulse analysis intervals of 0.3 sec and 1.5 sec on impulse duration and energy equivalent estimates. After processing a number of impacts chosen at random from a number of different piles, we found a maximum of $8 \%$ variability in impulse duration and $0.6 \%$ in energy equivalent (sum of pressure squared over $95 \%$ of the analysis interval). We also determined that an analysis interval of 0.8 sec was optimum to permit automated analysis of impact impulses for all pile-driving events observed during the study. The influence of background noise on impulse metrics requiring integration over the impulse was minimized by first integrating the squared pressure impulse signal over the full 0.8 -sec standardized impulse duration period, then subtracting the last portion of the 0.8 -sec impulse interval containing $5 \%$ of the summed squared impulse signal.

The number of hammer impacts and time required to drive a pile varied between piles (Appendix A). All of the impacts required to drive a pile were recorded and were available for analysis. For processing, analysis, and reporting each pile, the total time series of impact events was broken into three segments, each with equal numbers of samples. Peak positive and negative pressures and RMS pressure for each impact observed during driving of individual piles were determined. Summary statistics were computed for each pile segment. The number and percentage of impacts exceeding fish exposure criteria (180 $\mathrm{dB}_{\text {PEaK }} / / 1 \mu \mathrm{~Pa}$ or 1000 Pa $_{\text {реак }}$ and $150 \mathrm{~dB}_{\text {RMS }} / / 1 \mu \mathrm{~Pa}$ or 31.6 Pa $_{\text {RMS }}$ ) were summarized for each pile. In addition, spectral analysis was conducted to obtain spectral density $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ for each pile driven. The RMS pressure in Pascals and decibels for each impulse was computed as follows:

$$
\begin{array}{ll}
P a_{r m s} & \sqrt{\sum_{n 1}^{k}\left(P a_{k}\right)^{2} / k} \text { and } \\
d B_{r m s} & 20^{*} \log _{10}\left(P a_{r m s} * 1.0 E+6\right)
\end{array}
$$

The duration of the impact was defined as the time between the initiation of the impact sound impulse and the time containing $95 \%$ of the impulse energy. Summary statistics were generated for each monitored pile. Statistics included the $5^{\text {th }}, 10^{\text {th }}, 25^{\text {th }}, 75^{\text {th }}, 90^{\text {th }}$, and $95^{\text {th }}$ percentiles of the cumulative distribution of
impulse metrics, and minimum, maximum, median, mean, and standard deviations for peak and RMS pressure for each of the three analysis segments for each pile. The distributions were not tested for normality; there is no reason to suspect the distributions to be normal because the characteristics for each pile are dependent upon pile characteristics, substrate characteristics (which vary with depth), bubble curtain operation and effectiveness, and hammer operation.

### 3.0 Results

The hydroacoustic measurement results are presented and discussed in four sections. First, hydrophone calibration and background noise results are reported in Section 3.1 Hydrophone In-Field Operation Validation, followed by data that more completely describe the impact sound impulses in Section 3.2 Characteristics of Underwater Sound Impulses Generated by Pile Driving. Resulting observations of peak and RMS pressure are compared with marine protection threshold levels in Section 3.3 Comparison of Measured and Threshold Sound Pressures, and finally, observations about the sound attenuation performance of the bubble curtain and containment devices are presented in Section 3.4 Assessment of Bubble Curtain Effectiveness. All sound-pressure measurements presented in this report are given in Pa.

A total of 21 piles (14 plumb and 7 batter) were monitored in September, October, and November 2004 at the eastern end of the Hood Canal Bridge (Table 1, Figure 8). As described in Section 1, both plumb and batter piles were of steel pipe with a wall thickness of 0.5 in.; plumb piles were 24 -in. diameter and were driven vertically into the substrate, whereas the 16 -in. diameter batter piles were driven into the substrate at an angle (Figure 3). Of the monitored piles, three plumb and two batter piles were driven without a bubble curtain. Due to the tides, wave action, and constraints on safe placement of the hydrophones, it was not possible to consistently deploy the hydrophones precisely $10 \mathrm{~m}, 20 \mathrm{~m}$, and 60 m from monitored piles.

### 3.1 Hydrophone In-Field Operation Validation

Tests of the sound monitoring electronics for through-system performance with the hydrophone calibrator (pistonphone) consistently showed that the system was operating within acceptable tolerance of factorydetermined receiving sensitivity for the system's hydrophones and also that there was no distortion of the pistonphone signal by other portions of the monitoring system (Table 2). The peak frequency for pistonphone field calibration checks was 251.2 Hz . Peak sound-pressure levels varied from the expected peak amplitude by a maximum of $10.664 \mathrm{~Pa}(0.489 \mathrm{~dB})$, which is within the margin of error for the pistonphone ( $\pm 0.6 \mathrm{~dB}$ ).

Background noise was low within the measured frequency band (Tables 3 and 4). Median background peak sound pressure was between 0.81 Pa and 7.54 Pa ( 118.2 and $137.5 \mathrm{~dB}_{\text {Реак }}$ re $1 \mu \mathrm{~Pa}$ ) (Table 3) and median RMS levels were between 0.59 Pa and 5.33 Pa ( 115.4 and $134.5 \mathrm{~dB}_{\text {Rмs }}$ re $1 \mu \mathrm{~Pa}$ ) (Table 4). Most of the ambient background noise was below 10 Hz . These background levels were realistic for this environment in the absence of environmental factors, such as storm events with higher wind and rain, or anthropogenic noise, such as that generated by boat traffic. Background noise levels were several orders of magnitude below sound-pressure levels observed in pile-driving impact sound. Because background levels were insignificant relative to the amplitude of the signal from pile-driving impacts, low-level background noise was not removed from the data during impact sound signal data processing.

Table 1. Piles Monitored at Hood Canal Bridge in Fall 2004

| Date | Start <br> Time | $\begin{gathered} \hline \text { End } \\ \text { Time } \\ \hline \end{gathered}$ | Pile Type | Pile ID | Water <br> Depth (ft) | Bubble Curtain Type ${ }^{\text {a }}$ | Bubble Curtain Air Pressure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 09/02/04 | 1442 | 1447 | Plumb | 52N | 40 | Type II Confined | 120 cfm @ 90 psi |
| 09/02/04 | 1540 | 1554 | Plumb | 50N | 40 | None | Not applicable |
| 09/03/04 | 1021 | 1129 | Plumb | 121N | 42 | Type II Confined | 95 cfm@25 psi |
| 09/03/04 | 1145 | 1155 | Plumb | 118N | 39 | Type II Confined | 320 cfm @ 40 psi |
| 09/03/04 | 1234 | 1242 | Plumb | 120N | 39 | None | Not applicable |
| 10/27/04 | 1028 | 1036 | Plumb | 235 | 4.5 | Type II Confined | 320 cfm @ 120 psi |
| 10/27/04 | 1117 | 1127 | Plumb | 237 | 4 | Type II Confined | 330 cfm @ 115 psi |
| 10/27/04 | 1305 | 1315 | Plumb | 238 | 7 | Type II Confined | 330 cfm@ 115 psi |
| 10/27/04 | 1344 | 1354 | Plumb | 240 | 9 | None | Not applicable |
| 10/27/04 | 1637 | 1645 | Plumb | 172 | 20 | Type II Confined | 200-400 cfm@150 psi |
| 10/28/04 | 0924 | 0939 | Plumb | $171{ }^{\text {b }}$ | 18 | Type II Confined | 100-400cfm@150 psi |
| 10/28/04 | 1100 | 1106 | Batter | 167 | 7 | Type I Unconfined | > 400 cfm @ 110 psi |
| 10/28/04 | 1309 | 1336 | Plumb | $171{ }^{\text {b }}$ | 18 | Type II Confined | 200-400 cfm@140 psi |
| 11/10/04 | 1005 | 1013 | Plumb | 255 | 33 | Type II Confined | 200-250 cfm@110 psi |
| 11/10/04 | 1102 | 1109 | Plumb | 252 | 31 | Type II Confined | 200-260 cfm@110 psi |
| 11/10/04 | 1149 | 1211 | Plumb | 249 | 32 | Type II Confined | 220-280 cfm@110 psi |
| 11/10/04 | 1414 | 1417 | Batter | 177 | 37 | Type I Unconfined | 400 cfm@110 psi |
| 11/10/04 | 1454 | 1500 | Batter | 174 | 29 | Type I Unconfined | 400 cfm@110 psi |
| 11/10/04 | 1604 | 1607 | Batter | 178 | 37 | None | Not applicable |
| 11/12/04 | 0939 | 0942 | Batter | 182 | 41 | Type I Unconfined | 320 cfm@ 10 psi |
| 11/12/04 | 1027 | 1031 | Batter | 181 | 33 | Type I Unconfined | 320 cfm @10 psi |
| 11/12/04 | 1108 | 1116 | Batter | 244 | 20 | None | Not applicable |

a. See Appendix F: plumb piles were driven with bubbles confined in sleeve; sleeve was not used on batter piles driven at an angle.
b. Pile 171 needed bubble curtain sleeve extension added to complete driving, hence separation in time events.


Figure 8. Locations of Plumb and Batter Piles Monitored With or Without Sound Mitigation (Bubble Curtain) During Hydroacoustic Monitoring Study, Eastern Approach of the Hood Canal Bridge

Table 2. Results of System Performance Measurements Compared with Expected Values

| Date | Start Hour | Hydrophone Channel | Frequency (Hz) |  | Sound Pressure Level (Pa) |  | Root Mean Square Sound Pressure (Pa) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Peak | Expected | Peak | Expected Peak | RMS | Expected RMS |
| 09/2/2004 | 9.970 | 1 | 251.2 | 251.2 | 184.064 | 184.296 | 130.153 | 130.317 |
| 09/2/2004 | 10.026 | 2 | 251.2 | 251.2 | 184.669 | 184.296 | 130.581 | 130.317 |
| 09/2/2004 | 10.082 | 3 | 251.2 | 251.2 | 185.024 | 184.296 | 130.832 | 130.317 |
| 09/3/2004 | 8.230 | 1 | 251.2 | 251.2 | 188.538 | 184.296 | 133.317 | 130.317 |
| 09/3/2004 | 8.301 | 2 | 251.2 | 251.2 | 186.515 | 184.296 | 131.886 | 130.317 |
| 09/3/2004 | 8.346 | 3 | 251.2 | 251.2 | 184.209 | 184.296 | 130.255 | 130.317 |
| 10/27/2004 | 9.658 | 1 | 251.2 | 251.2 | 183.669 | 184.296 | 129.873 | 130.317 |
| 10/27/2004 | 9.695 | 2 | 251.2 | 251.2 | 184.967 | 184.296 | 130.791 | 130.317 |
| 10/27/2004 | 9.743 | 3 | 251.2 | 251.2 | 179.430 | 184.296 | 126.876 | 130.317 |
| 10/28/2004 | 8.823 | 1 | 251.2 | 251.2 | 193.796 | 184.296 | 137.035 | 130.317 |
| 10/28/2004 | 8.863 | 2 | 251.2 | 251.2 | 182.326 | 184.296 | 128.924 | 130.317 |
| 10/28/2004 | 8.890 | 3 | 251.2 | 251.2 | 184.587 | 184.296 | 130.522 | 130.317 |
| 11/10/2004 | 8.665 | 1 | 251.2 | 251.2 | 187.500 | 184.296 | 132.582 | 130.317 |
| 11/10/2004 | 8.753 | 2 | 251.2 | 251.2 | 186.514 | 184.296 | 131.886 | 130.317 |
| 11/10/2004 | 8.829 | 3 | 251.2 | 251.2 | 194.960 | 184.296 | 137.857 | 130.317 |
| 11/12/2004 | 9.038 | 1 | 251.2 | 251.2 | 189.238 | 184.296 | 133.812 | 130.317 |
| 11/12/2004 | 9.089 | 2 | 251.2 | 251.2 | 182.344 | 184.296 | 128.937 | 130.317 |
| 11/12/2004 | 9.125 | 3 | 251.2 | 251.2 | 189.012 | 184.296 | 133.652 | 130.317 |

Table 3. Cumulative Distribution Statistics for Background Peak Sound Pressure

| Date | Start <br> Hour | Hydrophone Channel | Background Peak Sound Pressure (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Percentile |  |  | $\begin{gathered} \text { Median } \\ \hline \text { (50th) } \end{gathered}$ | Average | Std Error | Percentile |  |  | Maximum |
|  |  |  | Minimum | 5th | 10th | 25th |  |  |  | 75th | 90th | 95th |  |
| 9/2/2004 | 14.143 | 1 | 0.01 | 0.31 | 0.47 | 0.83 | 1.55 | 2.56 | 0.04 | 3.19 | 5.87 | 7.77 | 77.36 |
| 9/2/2004 | 14.143 | 2 | 0.03 | 0.34 | 0.53 | 0.87 | 1.55 | 2.60 | 0.06 | 3.09 | 5.89 | 7.66 | 56.74 |
| 9/2/2004 | 14.143 | 3 | 0.02 | 0.26 | 0.35 | 0.58 | 0.99 | 1.49 | 0.03 | 1.64 | 3.08 | 4.62 | 44.22 |
| 9/3/2004 | 10.050 | 1 | 0.02 | 0.24 | 0.35 | 0.56 | 0.87 | 1.03 | 0.01 | 1.29 | 1.82 | 2.33 | 10.20 |
| 9/3/2004 | 10.050 | 2 | 0.02 | 0.31 | 0.41 | 0.64 | 1.02 | 2.20 | 0.10 | 1.52 | 2.39 | 10.11 | 40.84 |
| 9/3/2004 | 10.050 | 3 | 0.01 | 0.24 | 0.34 | 0.54 | 0.83 | 0.98 | 0.01 | 1.21 | 1.68 | 2.10 | 14.00 |
| 10/27/2004 | 10.355 | 1 | 0.03 | 0.26 | 0.38 | 0.63 | 1.02 | 1.57 | 0.03 | 1.69 | 3.23 | 4.90 | 24.11 |
| 10/27/2004 | 10.355 | 2 | 0.02 | 0.32 | 0.45 | 0.70 | 1.11 | 1.58 | 0.03 | 1.81 | 3.27 | 4.33 | 157.04 |
| 10/27/2004 | 10.355 | 3 | 0.02 | 0.24 | 0.35 | 0.55 | 0.87 | 1.12 | 0.02 | 1.32 | 1.96 | 2.50 | 32.54 |
| 10/28/2004 | 9.416 | 1 | 0.01 | 0.27 | 0.37 | 0.58 | 0.90 | 1.09 | 0.01 | 1.33 | 1.93 | 2.51 | 28.51 |
| 10/28/2004 | 9.416 | 2 | 0.01 | 0.30 | 0.41 | 0.67 | 1.08 | 1.38 | 0.02 | 1.68 | 2.48 | 3.12 | 122.31 |
| 10/28/2004 | 9.416 | 3 | 0.01 | 0.24 | 0.32 | 0.52 | 0.83 | 1.02 | 0.01 | 1.24 | 1.79 | 2.30 | 18.61 |
| 11/10/2004 | 10.793 | 1 | 0.01 | 0.69 | 1.06 | 2.31 | 7.54 | 15.02 | 0.21 | 17.13 | 35.09 | 58.02 | 249.74 |
| 11/10/2004 | 10.793 | 2 | 0.02 | 0.53 | 0.76 | 1.45 | 5.46 | 13.70 | 0.21 | 19.02 | 37.63 | 53.53 | 141.94 |
| 11/10/2004 | 10.793 | 3 | 0.05 | 0.45 | 0.64 | 1.08 | 2.12 | 5.72 | 0.16 | 7.47 | 16.83 | 21.98 | 68.38 |
| 11/10/2004 | 11.809 | 1 | 0.01 | 0.25 | 0.37 | 0.61 | 1.00 | 1.27 | 0.02 | 1.56 | 2.23 | 3.00 | 21.51 |
| 11/10/2004 | 11.809 | 2 | 0.04 | 0.28 | 0.41 | 0.64 | 0.99 | 1.24 | 0.03 | 1.43 | 2.04 | 2.60 | 32.60 |
| 11/10/2004 | 11.809 | 3 | 0.05 | 0.23 | 0.32 | 0.52 | 0.81 | 1.35 | 0.11 | 1.19 | 1.65 | 2.08 | 64.54 |
| 11/10/2004 | 14.113 | 1 | 0.01 | 0.37 | 0.55 | 1.00 | 1.95 | 4.42 | 0.07 | 5.04 | 11.64 | 16.96 | 88.85 |
| 11/10/2004 | 14.113 | 2 | 0.01 | 0.38 | 0.54 | 0.90 | 1.58 | 3.10 | 0.04 | 3.27 | 7.79 | 12.23 | 37.86 |
| 11/10/2004 | 14.113 | 3 | 0.05 | 0.31 | 0.44 | 0.73 | 1.24 | 3.85 | 0.12 | 2.95 | 11.64 | 19.29 | 54.82 |
| 11/10/2004 | 14.721 | 1 | 0.01 | 0.33 | 0.47 | 0.79 | 1.31 | 1.59 | 0.01 | 2.02 | 2.95 | 3.83 | 14.97 |
| 11/10/2004 | 14.721 | 2 | 0.03 | 0.34 | 0.50 | 0.87 | 1.42 | 1.80 | 0.02 | 2.23 | 3.35 | 4.38 | 18.79 |
| 11/10/2004 | 14.721 | 3 | 0.03 | 0.35 | 0.52 | 0.84 | 1.38 | 1.75 | 0.03 | 2.10 | 3.10 | 4.21 | 32.62 |
| 11/10/2004 | 16.067 | 1 | 0.03 | 0.27 | 0.38 | 0.62 | 1.09 | 8.59 | 0.47 | 3.64 | 22.52 | 45.99 | 387.61 |
| 11/10/2004 | 16.067 | 2 | 0.00 | 0.28 | 0.38 | 0.62 | 0.97 | 1.23 | 0.01 | 1.43 | 2.08 | 2.82 | 21.24 |
| 11/10/2004 | 16.067 | 3 | 0.02 | 0.24 | 0.34 | 0.56 | 0.86 | 1.31 | 0.06 | 1.29 | 1.90 | 2.66 | 32.76 |
| 11/12/2004 | 9.451 | 1 | 0.02 | 0.52 | 0.77 | 1.37 | 2.35 | 2.70 | 0.01 | 3.49 | 4.92 | 6.36 | 26.39 |
| 11/12/2004 | 9.451 | 2 | 0.03 | 0.68 | 1.05 | 2.18 | 4.06 | 4.42 | 0.02 | 5.99 | 7.92 | 9.50 | 33.35 |
| 11/12/2004 | 9.451 | 3 | 0.01 | 0.36 | 0.51 | 0.89 | 1.54 | 1.82 | 0.01 | 2.39 | 3.30 | 4.10 | 13.63 |
| 11/12/2004 | 10.398 | 1 | 0.01 | 0.25 | 0.36 | 0.58 | 0.91 | 1.15 | 0.01 | 1.41 | 2.19 | 2.94 | 8.88 |
| 11/12/2004 | 10.398 | 2 | 0.01 | 0.27 | 0.38 | 0.62 | 0.98 | 1.12 | 0.01 | 1.42 | 1.97 | 2.41 | 14.90 |
| 11/12/2004 | 10.398 | 3 | 0.02 | 0.23 | 0.32 | 0.52 | 0.81 | 0.95 | 0.01 | 1.17 | 1.62 | 2.00 | 14.66 |
| 11/12/2004 | 10.978 | 1 | 0.04 | 0.63 | 0.94 | 1.67 | 2.78 | 3.10 | 0.02 | 4.07 | 5.52 | 6.58 | 24.27 |
| 11/12/2004 | 10.978 | 2 | 0.01 | 0.46 | 0.69 | 1.20 | 2.00 | 2.20 | 0.01 | 2.90 | 3.84 | 4.59 | 21.87 |
| 11/12/2004 | 10.978 | 3 | 0.02 | 0.32 | 0.47 | 0.82 | 1.36 | 1.65 | 0.02 | 1.99 | 2.78 | 3.83 | 24.02 |

Table 4. Cumulative Distribution Statistics for Background Root Mean Square Sound Pressure

| Date | Start Hour | Hydrophone Channel | Background RMS Sound Pressure (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Percentile |  |  | Median (50th) | Average | Std Error | Percentile |  |  | Maximum |
|  |  |  | Minimum | 5th | 10th | 25th |  |  |  | 75th | 90th | 95th |  |
| 9/2/2004 | 14.143 | 1 | 0.01 | 0.22 | 0.33 | 0.59 | 1.09 | 1.81 | 0.03 | 2.26 | 4.15 | 5.49 | 54.70 |
| 9/2/2004 | 14.143 | 2 | 0.02 | 0.24 | 0.37 | 0.61 | 1.10 | 1.84 | 0.04 | 2.18 | 4.17 | 5.42 | 40.12 |
| 9/2/2004 | 14.143 | 3 | 0.01 | 0.18 | 0.25 | 0.41 | 0.70 | 1.05 | 0.02 | 1.16 | 2.18 | 3.27 | 31.27 |
| 9/3/2004 | 10.050 | 1 | 0.01 | 0.17 | 0.25 | 0.40 | 0.62 | 0.73 | 0.00 | 0.91 | 1.28 | 1.65 | 7.21 |
| 9/3/2004 | 10.050 | 2 | 0.01 | 0.22 | 0.29 | 0.46 | 0.72 | 1.56 | 0.07 | 1.07 | 1.69 | 7.15 | 28.88 |
| 9/3/2004 | 10.050 | 3 | 0.00 | 0.17 | 0.24 | 0.38 | 0.59 | 0.69 | 0.01 | 0.86 | 1.19 | 1.48 | 9.90 |
| 10/27/2004 | 10.355 | 1 | 0.02 | 0.18 | 0.27 | 0.45 | 0.72 | 1.11 | 0.02 | 1.19 | 2.28 | 3.47 | 17.05 |
| 10/27/2004 | 10.355 | 2 | 0.02 | 0.23 | 0.32 | 0.50 | 0.79 | 1.12 | 0.02 | 1.28 | 2.31 | 3.06 | 111.04 |
| 10/27/2004 | 10.355 | 3 | 0.01 | 0.17 | 0.25 | 0.39 | 0.61 | 0.79 | 0.02 | 0.93 | 1.39 | 1.77 | 23.01 |
| 10/28/2004 | 9.416 | 1 | 0.00 | 0.19 | 0.26 | 0.41 | 0.64 | 0.77 | 0.00 | 0.94 | 1.37 | 1.78 | 20.16 |
| 10/28/2004 | 9.416 | 2 | 0.01 | 0.21 | 0.29 | 0.47 | 0.76 | 0.98 | 0.01 | 1.19 | 1.75 | 2.21 | 88.49 |
| 10/28/2004 | 9.416 | 3 | 0.01 | 0.17 | 0.23 | 0.37 | 0.59 | 0.72 | 0.00 | 0.87 | 1.26 | 1.62 | 13.16 |
| 11/10/2004 | 10.793 | 1 | 0.01 | 0.49 | 0.75 | 1.63 | 5.33 | 10.62 | 0.15 | 12.11 | 24.82 | 41.03 | 176.59 |
| 11/10/2004 | 10.793 | 2 | 0.02 | 0.37 | 0.54 | 1.02 | 3.86 | 9.69 | 0.15 | 13.45 | 26.61 | 37.85 | 100.37 |
| 11/10/2004 | 10.793 | 3 | 0.04 | 0.32 | 0.45 | 0.76 | 1.50 | 4.04 | 0.11 | 5.28 | 11.90 | 15.54 | 48.36 |
| 11/10/2004 | 11.809 | 1 | 0.01 | 0.18 | 0.26 | 0.43 | 0.70 | 0.90 | 0.01 | 1.10 | 1.57 | 2.12 | 15.21 |
| 11/10/2004 | 11.809 | 2 | 0.03 | 0.20 | 0.29 | 0.45 | 0.70 | 0.88 | 0.02 | 1.01 | 1.44 | 1.84 | 23.06 |
| 11/10/2004 | 11.809 | 3 | 0.03 | 0.16 | 0.23 | 0.37 | 0.57 | 0.96 | 0.08 | 0.84 | 1.16 | 1.47 | 45.64 |
| 11/10/2004 | 14.113 | 1 | 0.00 | 0.26 | 0.39 | 0.71 | 1.38 | 3.12 | 0.05 | 3.56 | 8.23 | 11.99 | 62.83 |
| 11/10/2004 | 14.113 | 2 | 0.01 | 0.27 | 0.38 | 0.64 | 1.11 | 2.19 | 0.03 | 2.31 | 5.51 | 8.65 | 26.77 |
| 11/10/2004 | 14.113 | 3 | 0.03 | 0.22 | 0.31 | 0.52 | 0.88 | 2.72 | 0.09 | 2.09 | 8.23 | 13.64 | 38.76 |
| 11/10/2004 | 14.721 | 1 | 0.01 | 0.23 | 0.33 | 0.56 | 0.93 | 1.13 | 0.01 | 1.43 | 2.08 | 2.71 | 10.58 |
| 11/10/2004 | 14.721 | 2 | 0.02 | 0.24 | 0.36 | 0.60 | 1.00 | 1.28 | 0.01 | 1.57 | 2.37 | 3.10 | 13.28 |
| 11/10/2004 | 14.721 | 3 | 0.02 | 0.25 | 0.37 | 0.59 | 0.98 | 1.24 | 0.02 | 1.49 | 2.19 | 2.97 | 23.06 |
| 11/10/2004 | 16.067 | 1 | 0.02 | 0.19 | 0.27 | 0.44 | 0.77 | 6.07 | 0.33 | 2.57 | 15.92 | 32.52 | 274.08 |
| 11/10/2004 | 16.067 | 2 | 0.00 | 0.20 | 0.27 | 0.44 | 0.68 | 0.87 | 0.01 | 1.01 | 1.47 | 1.99 | 15.02 |
| 11/10/2004 | 16.067 | 3 | 0.02 | 0.17 | 0.24 | 0.39 | 0.61 | 0.93 | 0.04 | 0.91 | 1.35 | 1.88 | 23.17 |
| 11/12/2004 | 9.451 | 1 | 0.01 | 0.36 | 0.54 | 0.97 | 1.66 | 1.91 | 0.01 | 2.47 | 3.48 | 4.50 | 18.66 |
| 11/12/2004 | 9.451 | 2 | 0.02 | 0.08 | 0.75 | 1.54 | 2.87 | 3.12 | 0.02 | 4.24 | 5.60 | 6.72 | 23.58 |
| 11/12/2004 | 9.451 | 3 | 0.01 | 0.26 | 0.36 | 0.63 | 1.09 | 1.28 | 0.01 | 1.69 | 2.33 | 2.90 | 9.64 |
| 11/12/2004 | 10.398 | 1 | 0.00 | 0.18 | 0.25 | 0.41 | 0.65 | 0.81 | 0.01 | 1.00 | 1.55 | 2.08 | 6.28 |
| 11/12/2004 | 10.398 | 2 | 0.01 | 0.19 | 0.27 | 0.44 | 0.69 | 0.79 | 0.01 | 1.01 | 1.39 | 1.70 | 10.53 |
| 11/12/2004 | 10.398 | 3 | 0.01 | 0.16 | 0.23 | 0.37 | 0.57 | 0.67 | 0.01 | 0.83 | 1.15 | 1.41 | 10.37 |
| 11/12/2004 | 10.978 | 1 | 0.03 | 0.45 | 0.67 | 1.18 | 1.96 | 2.19 | 0.02 | 2.88 | 3.90 | 4.66 | 17.16 |
| 11/12/2004 | 10.978 | 2 | 0.01 | 0.32 | 0.49 | 0.85 | 1.41 | 1.56 | 0.01 | 2.05 | 2.72 | 3.25 | 15.47 |
| 11/12/2004 | 10.978 | 3 | 0.01 | 0.23 | 0.34 | 0.58 | 0.96 | 1.17 | 0.02 | 1.40 | 1.96 | 2.71 | 16.99 |

### 3.2 Characteristics of Underwater Sound Impulses Generated by Pile Driving

The characteristics of underwater sound-impact impulses are described by examining the sound-pressure data for a single impact (hammer blow, <1-sec duration), a succession of impacts (approximately $10-\mathrm{sec}$ duration), and all of the impacts for a typical pile-driving event (minutes) in Sections 3.2.1 through 3.2.3, respectively. Plumb and batter piles are considered separately. In addition to sound-pressure levels, exposure levels (cumulative pressure over time) and sound energy (spectral density or frequency content over the range of frequencies) are characteristics of underwater sound that are important to consider when looking at potential effects on marine life, especially fish. Exposure and energy metrics are presented in Section 3.2.4.

As described in Section 2, the amount of time and the number of hammer impacts required to drive a pile varied between piles (Appendix A, Appendix B). All of the impacts required to drive a pile were recorded and were available for analysis. For processing, analysis, and reporting each pile, the total time series of impact events was broken into three segments, each with an equal numbers of samples (one third of the total number of impacts). Peak positive and negative pressures and RMS pressure for each impact observed during driving of individual piles were determined. Summary statistics computed for each pile segment are tabulated in Appendix B. Appendix C provides a graphical representation of each piledriving event, shown as peak positive, peak negative, and RMS pressure at each impact in each of the three segments in a time series at each hydrophone. The statistical distribution of each of these measurements is shown graphically in Appendix D.

### 3.2.1 Sound Pressure - Single Impacts

Plumb Piles: The duration of sound impulses ranged from 0.011 sec to 0.791 sec with a median duration of 0.0389 sec for all plumb piles. Observed impulse durations were longest at the hydrophone located the greatest distance from the pile. Figure 9 shows an example of the sound-pressure levels for the three hydrophones used to collect data at plumb pile 235, which was driven with a bubble curtain in place. The increase in impulse duration with distance from the pile is the result of summation of the sound signal from the impact that arrives by the shortest direct path and those that take a slightly longer path to the hydrophone after being reflected off the surface and bottom. Additional sound may enter the water column to mix with that in the water after propagating away from the pile in ocean bottom substrate. These various versions of the sum of the impact signal upon arrival at the hydrophone are caused by alterations to the direct path signal, which commonly include increases in duration and amplitude and phase modulation of the pressure signal. The impact impulses observed at the three hydrophones also show the effects of attenuation, which is frequency-dependent, i.e., higher frequencies attenuate more rapidly than lower frequencies, and spread with distance as the impact sound impulse propagates away from the pile.

Batter Piles: Durations of single impulses from impacts on batter piles ranged from 0.018 sec to 0.758 sec , with a median duration of 0.0581 sec . For the same reason stated above for plumb piles, impact-impulse durations were almost always longest at the hydrophone the greatest distance from the pile (top plot, Figure 10).


Figure 9. Sound-Pressure Levels Measured for a Single Impact of Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)


Figure 10. Sound-Pressure Levels Measured for a Single Impact of Batter Pile 178 Driven in 37 ft of Water without Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)

### 3.2.2 Sound Pressure - Successive Hammer Impacts

The time between hammer impacts and the duration of each impact sound event in conjunction with other factors (e.g., behavior of fish in the vicinity of the pile, water current velocities) determine the amount of time during driving of a pile that fish are exposed to pile-impact sound.

Plumb Piles. The time between impacts varied slightly between piles and increased the deeper a pile was driven into the substrate. The time between impacts for plumb piles averaged 1.4 sec , about 7 impacts every 10 sec (Figure 11). Time between impacts increased from about 1.25 sec at the beginning of the pile-driving event to 1.5 sec at the end.

Batter Piles: Similar to plumb piles, time between impacts varied slightly between batter piles and increased the deeper a pile was driven into the substrate. The time between impacts for batter piles averaged 1.2 sec , about 8 impacts every 10 sec (Figure 12). The time between strikes varied from about 1.0 sec at the beginning of the pile-driving event to 1.4 sec at the end.


Figure 11. Sound-Pressure Levels Measured over Successive Impacts for Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)


Figure 12. Sound-Pressure Levels Measured over Successive Impacts of Batter Pile 178 Driven in 37 ft of Water Without Bubble Curtain in Place (bottom, H1; middle, H2; top, H3)

### 3.2.3 Sound Pressure - Complete Pile-Driving Event

For each complete pile-driving event, the number of impacts and summary statistics (minimum, maximum, and mean) for peak positive pressure and RMS pressure are provided for each hydrophone (H1, H2, H3) in Table 5. Sequences of sound-pressure observations for typical plumb and batter piledriving events are presented in Figure 13 and 14, respectively. Similar graphs of the sequence of soundpressure levels over time at each hydrophone for all monitored pile-driving events are provided in Appendix A. More detailed distribution statistics for all sound measurements are tabulated in Appendix B. Peak positive, peak negative, and RMS sound pressures are shown graphically for each impact series (by hydrophone) in Appendix C; the statistical distributions for peak positive, peak negative, and RMS sound pressures are shown graphically in Appendix D.

Plumb Piles: Peak and RMS sound pressure varied between piles and was also quite variable over the driving duration for individual piles (Table 5). Sound pressure varied from peak positive pressure of $15,525 \mathrm{~Pa}$ to peak negative pressure of $-24,491 \mathrm{~Pa}$ (Appendix B, Tables B. 2 and B.3). The median peak positive and peak negative values for all plumb pile impacts were $5,952 \mathrm{~Pa}$ and $-6,580 \mathrm{~Pa}$. The precise reasons for observed variation in sound-pressure levels for individual piles cannot be determined; however, the variation is most likely due to a combination of factors, including operation of the hammer, composition of substrate, and the dynamic response of the pile to hammer blows.

There was a distinct decrease in sound-pressure levels with increased distance of the hydrophones from the pile due to shallow-water sound propagation factors, including attenuation and geometric spreading; however, there were a few instances in which pressure levels were higher at longer range. The time sequence of sound-pressure levels for all piles is provided in Appendix A.

Table 5. Summary Statistics for Peak Positive Pressure and RMS Pressure for Each Monitored Pile-driving event

| Pile ID | Pile Type | Bubble Curtain | Water Depth <br> (ft) | Hydrophone Number | Hydrophone Depth (ft) | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Peak Positive Pressure (Pa) |  |  | RMS Pressure (Pa) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Minimum | Maximum | Average | Minimum | Maximum | Average |
| 121N | Plumb | Type II Confined | 42 | H1 | 20 | 296 | 2192 | 11763 | 7736 | 62 | 3728 | 1937 |
| 121N | Plumb | Type II Confined | 42 | H2 | 20 | 296 | 1296 | 12547 | 5023 | 36 | 2521 | 1406 |
| 121N | Plumb | Type II Confined | 42 | H3 | 20 | 294 | 561 | 5869 | 3026 | 23 | 1222 | 702 |
| 52N | Plumb | Type II Confined | 40 | H1 | 20 | 107 | 1935 | 10531 | 7910 | 350 | 2992 | 2211 |
| 52N | Plumb | Type II Confined | 40 | H2 | 20 | 107 | 3391 | 14782 | 9401 | 804 | 4498 | 2772 |
| 52N | Plumb | Type II Confined | 40 | H3 | 20 | 107 | 714 | 7923 | 4665 | 204 | 1481 | 1168 |
| 118N | Plumb | Type II Confined | 39 | H1 | 20 | 203 | 606 | 12508 | 8539 | 48 | 2963 | 1984 |
| 118N | Plumb | Type II Confined | 39 | H2 | 20 | 202 | 1940 | 7722 | 5186 | 358 | 1639 | 1114 |
| 118N | Plumb | Type II Confined | 39 | H3 | 20 | 200 | 930 | 2986 | 2331 | 53 | 591 | 438 |
| 255 | Plumb | Type II Confined | 33 | H1 | 10 | 234 | 1869 | 8011 | 6134 | 461 | 3109 | 2137 |
| 255 | Plumb | Type II Confined | 33 | H2 | 10 | 234 | 1594 | 7532 | 5296 | 387 | 2585 | 1783 |
| 255 | Plumb | Type II Confined | 33 | H3 | 10 | 234 | 463 | 14039 | 2456 | 108 | 4002 | 458 |
| 249 | Plumb | Type II Confined | 32 | H1 | 10 | 506 | 1569 | 15214 | 7482 | 329 | 3274 | 1952 |
| 249 | Plumb | Type II Confined | 32 | H2 | 10 | 506 | 1441 | 14297 | 5954 | 189 | 3065 | 1896 |
| 249 | Plumb | Type II Confined | 32 | H3 | 10 | 505 | 316 | 3421 | 2007 | 53 | 791 | 428 |
| 252 | Plumb | Type II Confined | 31 | H1 | 10 | 256 | 1145 | 10900 | 7209 | 171 | 4506 | 2972 |
| 252 | Plumb | Type II Confined | 31 | H2 | 10 | 256 | 1629 | 7415 | 4898 | 125 | 2990 | 1866 |
| 252 | Plumb | Type II Confined | 31 | H3 | 10 | 253 | 521 | 3495 | 1924 | 34 | 748 | 304 |
| 172 | Plumb | Type II Confined | 20 | H1 | $23^{\text {a }}$ | 194 | 650 | 14258 | 10234 | 40 | 7169 | 4542 |
| 172 | Plumb | Type II Confined | 20 | H2 | $23^{\text {a }}$ | 194 | 952 | 15135 | 11469 | 97 | 10746 | 5436 |
| 172 | Plumb | Type II Confined | 20 | H3 | $13^{\text {a }}$ | 188 | 688 | 3775 | 2906 | 58 | 1123 | 854 |
| 171 | Plumb | Type II Confined | 18 | H1 | $6,7^{\text {b }}$ | 405 | 1191 | 12435 | 8673 | 266 | 4775 | 2589 |
| 171 | Plumb | Type II Confined | 18 | H2 | $6,10^{\text {b }}$ | 405 | 1028 | 13742 | 9160 | 224 | 5586 | 3162 |
| 171 | Plumb | Type II Confined | 18 | H3 | $7,6{ }^{\text {b }}$ | 397 | 593 | 3750 | 2818 | 143 | 1958 | 1037 |
| 238 | Plumb | Type II Confined | 7 | H1 | $15^{\text {a }}$ | 218 | 995 | 9712 | 5156 | 112 | 3852 | 2006 |
| 238 | Plumb | Type II Confined | 7 | H2 | $15^{\text {a }}$ | 216 | 639 | 9395 | 5711 | 45 | 3634 | 2122 |
| 238 | Plumb | Type II Confined | 7 | H3 | $7^{\text {a }}$ | 204 | 442 | 4279 | 3088 | 54 | 1566 | 998 |
| 235 | Plumb | Type II Confined | 4.5 | H1 | $9.0^{\text {a }}$ | 257 | 1996 | 8681 | 5882 | 420 | 4136 | 2163 |
| 235 | Plumb | Type II Confined | 4.5 | H2 | $8.6{ }^{\text {a }}$ | 257 | 2057 | 8812 | 5161 | 293 | 3125 | 1936 |
| 235 | Plumb | Type II Confined | 4.5 | H3 | $8.3^{\text {a }}$ | 257 | 895 | 5258 | 4229 | 87 | 2076 | 1349 |
| 237 | Plumb | Type II Confined | 5 | H1 | $14^{\text {a }}$ | 368 | 1336 | 10087 | 6938 | 261 | 3173 | 2144 |
| 237 | Plumb | Type II Confined | 5 | H2 | $10^{\text {a }}$ | 368 | 756 | 9814 | 6269 | 102 | 2988 | 1923 |
| 237 | Plumb | Type II Confined | 5 | H3 | $9^{\text {a }}$ | 366 | 594 | 4905 | 3606 | 60 | 2194 | 1277 |

Table 5. (contd)

| Pile ID | Pile Type | Bubble Curtain | Water Depth (ft) | Hydrophone Number | Hydrophone Depth (ft) | Number of Impacts | Peak Positive Pressure (Pa) |  |  | RMS Pressure (Pa) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Minimum | Maximum | Average | Minimum | Maximum | Average |
| 50N | Plumb | None | 40 | H1 | 20 | 334 | 276 | 14456 | 11227 |  | 2745 | 2038 |
| 50N | Plumb | None | 40 | H2 | 20 | 334 | 1071 | 14335 | 11422 | 50 | 2682 | 2109 |
| 50N | Plumb | None | 40 | H3 | 20 | 335 | 598 | 14376 | 10684 | 60 | 3968 | 2710 |
| 120N | Plumb | None | 39 | H1 | 20 | 152 | 1941 | 15525 | 11578 | 439 | 4528 | 3380 |
| 120N | Plumb | None | 39 | H2 | 20 | 152 | 1149 | 12446 | 8369 | 230 | 3133 | 2419 |
| 120N | Plumb | None | 39 | H3 | 20 | 151 | 1016 | 6684 | 5064 | 299 | 1952 | 1578 |
| 240 | Plumb | None | 9 | H1 | $15^{\text {a }}$ | 297 | 1314 | 15147 | 8502 | 133 | 4399 | 2811 |
| 240 | Plumb | None | 9 | H2 | $15^{\text {a }}$ | 298 | 177 | 14528 | 7157 | 34 | 4308 | 2510 |
| 240 | Plumb | None | 9 | H3 | $7^{\text {a }}$ | 296 | 611 | 7216 | 5300 | 37 | 2206 | 1585 |
| 182 | Batter | Type I Unconfined | 41 | H1 | 15 | 46 | 1038 | 9349 | 6206 | 132 | 2295 | 1485 |
| 182 | Batter | Type I Unconfined | 41 | H2 | 15 | 46 | 869 | 6405 | 4543 | 116 | 2563 | 1613 |
| 182 | Batter | Type I Unconfined | 41 | H3 | 15 | 46 | 503 | 3455 | 2328 | 105 | 946 | 629 |
| 177 | Batter | Type I Unconfined | 37 | H1 | 10 | 28 | 396 | 4204 | 2363 | 26 | 1318 | 502 |
| 177 | Batter | Type I Unconfined | 37 | H2 | 10 | 26 | 638 | 7361 | 2161 | 52 | 1289 | 510 |
| 177 | Batter | Type I Unconfined | 37 | H3 | 10 | 21 | 500 | 2045 | 1152 | 57 | 457 | 168 |
| 181 | Batter | Type I Unconfined | 33 | H1 | 15 | 49 | 595 | 5323 | 3250 | 25 | 1938 | 946 |
| 181 | Batter | Type I Unconfined | 33 | H2 | 15 | 47 | 899 | 4199 | 2542 | 124 | 1206 | 643 |
| 181 | Batter | Type I Unconfined | 33 | H3 | 15 | 45 | 570 | 2226 | 1376 | 17 | 469 | 260 |
| 174 | Batter | Type I Unconfined | 29 | H1 | 10 | 54 | 513 | 6005 | 2583 | 27 | 1394 | 605 |
| 174 | Batter | Type I Unconfined | 29 | H2 | 10 | 53 | 1006 | 5730 | 3351 | 179 | 1890 | 902 |
| 174 | Batter | Type I Unconfined | 29 | H3 | 10 | 50 | 553 | 2299 | 1309 | 47 | 726 | 194 |
| 167 | Batter | Type I Unconfined | 7 | H1 | 7b | 102 | 946 | 10375 | 4758 | 91 | 3630 | 1411 |
| 167 | Batter | Type I Unconfined | 7 | H2 | $10^{\text {a }}$ | 99 | 751 | 6803 | 2117 | 95 | 1978 | 520 |
| 167 | Batter | Type I Unconfined | 7 | H3 | $6^{\text {a }}$ | 66 | 559 | 2723 | 1083 | 31 | 949 | 309 |
| 178 | Batter | None | 37 | H1 | 10 | 53 | 330 | 8491 | 5563 | 40 | 2081 | 1136 |
| 178 | Batter | None | 37 | H2 | 10 | 52 | 483 | 9625 | 6609 | 28 | 3505 | 2217 |
| 178 | Batter | None | 37 | H3 | 10 | 50 | 464 | 3268 | 2160 | 60 | 761 | 493 |
| 244 | Batter | None | 20 | H1 | 10 | 54 | 185 | 10809 | 4077 | 26 | 2759 | 1089 |
| 244 | Batter | None | 20 | H2 | 10 | 51 | 592 | 7221 | 3792 | 41 | 2102 | 935 |
| 244 | Batter | None | 20 | H3 | 10 | 49 | 973 | 5788 | 2293 | 147 | 1284 | 568 |

a. Hydrophones located offshore of pile in deeper water but still parallel to shore.
b. Pile 171 hydrophones deployed at slightly different depths before and after bubble curtain sleeve extension.


Figure 13. Sound-Pressure Levels (Pa) Measured for Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place. H1 (bottom plot), H2 (middle plot), and H3 (top plot) were approximately $64.7,89.1$, and 154.8 ft from the pile, respectively.


Figure 14. Sound-Pressure Levels ( Pa ) measured for batter pile 178 driven in 37 ft of water with no bubble curtain. H1 (bottom plot), H2 (middle plot), and H3 (top plot).

Batter Piles: Observed sound pressures were, in general, lower for batter piles than for plumb piles (Table 5). There are probably many factors that resulted in batter piles showing lower sound-pressure values, including lower hammer setting, more oblique entry into bottom substrate, and shallower penetration of substrate. Sound pressure varied from peak positive pressures of $10,809 \mathrm{~Pa}$ to peak negative pressures of $-15,405 \mathrm{~Pa}$. The median peak positive and peak negative values for all plumb pile impacts was $2,571 \mathrm{~Pa}$ and $-2,685 \mathrm{~Pa}$. The time sequence of sound-pressure levels for all piles is provided in Appendix A.

### 3.2.4 Impulsive Sound Energy Characteristics

The frequency content of an impulsive sound signal contains information critical to understanding potential impacts to fish and other animals. In general, fish hearing sensitivity peaks at lower frequencies, whereas higher frequencies are required for the rapid pressure rise time (time from zero or minimum signal to maximum signal) typical of impact sounds that can cause barotrauma (Hastings and Popper 2005). As sound mitigation devices, bubble curtains are intended to act on impulsive sound by 1) reducing the total energy (spectral density) in the impulse and 2) reducing the rise time by attenuating higher frequencies more than lower frequencies. The impact sound impulses for all piles were analyzed to determine their frequency content as follows.

Spectral densities (energy index per unit of frequency) for sound impulses were calculated using the procedure "Proc Spectra" in SAS. The spectral densities were calculated using the sum of the first 20 impact sound impulses for each pile, which permitted better frequency resolution of the spectral density of impact impulses. Plots of spectral densities computed for all piles and hydrophones are provided in Appendix E. Figure 15 shows plots of spectral density computed for each hydrophone at three plumb piles (172, 171, and 238), driven with a bubble curtain deployed. The spectral density data in the figures clearly show the high variability in the spectral characteristics of sound impulses among piles and monitoring locations. In general, sound levels are low with little energy at higher frequencies by the time the sound propagates to the most distant hydrophone (H3), located at approximately 60 m from the pile being monitored. The difference between the farthest hydrophone (H3) and the nearer hydrophones (H1, H 2 ) shows that higher frequencies attenuated more rapidly with distance from the pile than did lower frequencies, which is as expected (Urick 1983). However, on occasion, the complexity of the sound field generated by pile driving becomes apparent when impact signals with higher energy are observed at longer-range hydrophones. This is illustrated by pile 172 in Figure 15, where the impact sound observed at hydrophone H 2 , located at approximately 20 m from the monitored pile, has a higher energy level than that at hydrophone H 1 , located at about 10 m from the monitored pile.

For this study, we do not have enough information to estimate sound energy, but were able to compute an index of sound energy ( $\mathrm{Pa}^{2} / \mathrm{Hz}$ over frequency range) and use it as a surrogate for spectral density in our presentation and discussion of results. We use a similar approach to express cumulative sound exposure ( $\mathrm{Pa}^{2}$ over time, an index of total energy). Indices for cumulative energy and spectral density for a single pile impact are shown in Figure 16 and 17 (compared with the first 20 impacts as shown in Figure 15). This is a means of comparing the energy intensity and rise time for single pile-driving impacts under a range of conditions; it is also a way to express the acoustic single impact "dose" received by a potential target organism, such as a fish. It should be noted, however, that in this study, the total energy that is needed to estimate acoustic dose cannot be estimated from the available data because acoustic particle velocities were not measured and free-field assumptions cannot be substantiated. Figure 16 shows plots of sound energy for plumb pile 255, driven in deeper water ( 33 ft ) with a bubble curtain in place, whereas Figure 17 shows plots of sound energy for plumb pile 50N, driven in deeper water ( 40 ft ) without a bubble curtain in place.


Figure 15. Example of Plots of Spectral Density Indices $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ versus Frequency (Hz) at Each Hydrophone (H1, H2, H3 from left to right) for First 20 Impacts on Plumb Piles 172, 171, and 238

Figure 16a


Figure 16b


Figure 16. Power Spectral Density Indices (Figure 16a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 16b) for a Single Pile-Driving Impact Measured at Plumb Pile 255, Driven in 33 ft of Water with Bubble Curtain. On the cumulative sound plot, the vertical lines represent the point in time when the summed squared sound pressures of the waveform total $95 \%$ of the sound energy.

## Figure 17a



Figure 17b


Figure 17. Power Spectral Density Indices (Figure 17a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 17b) for a Single Pile-Driving Impact Measured at Plumb Pile 50N, Driven in 40 ft of Water Without Bubble Curtain. On the cumulative sound plot, the vertical lines represent the point in time when the summed squared sound pressures of the waveform total $95 \%$ of the sound energy.

Overall, the rise time and energy at the hydrophones were higher for the plumb pile driven without a bubble curtain than the pile driven with a bubble curtain in deeper water. However, because of lack of experimental control, it was not possible to determine whether the lower energy and longer rise times for the pile driven with a bubble curtain was because the bubble curtain was effective, or whether the observed differences were due to other factors.

Similarly, Figure 18 and 19 show cumulative sound exposure and spectral density indices for two plumb piles driven in shallower water: pile 238, driven in 7 ft of water with the bubble curtain in place, and pile 240, driven in 9 ft of water without a bubble curtain. In the case of these two piles, the differences between energy and rise time are mixed depending on distance from the pile. For the hydrophone closest to the pile (H1), the most energy and highest rise time were observed for the pile driven without a bubble curtain. However, the opposite was observed for the H2 hydrophones located approximately 20 m from the piles, and there was little difference in either rise time or energy for the H3 hydrophone located approximately 60 m from the monitored piles. Similar results are shown in the spectral density plots for these piles. As is the case for the piles driven in deeper water, it is not possible to conclude from these data whether the confined bubble curtain was effective.

### 3.3 Comparison of Measured and Threshold Sound Pressures

Sound-pressure levels, both peak and RMS, consistently exceeded the threshold levels set for protection of marine life, which for this pile-driving project are $180 \mathrm{~dB} / / \mu \mathrm{Pa}\left(1000\right.$ Pа $\left._{\text {РЕАк }}\right)$ and $150 \mathrm{~dB} / / \mu \mathrm{Pa}$ (31.6 $\mathrm{Pa}_{\mathrm{RMS}}$ ), respectively (Table 6). Appendix C contains figures for each monitored pile that show the peak negative and positive pressures and RMS pressure for each impact at each of the three hydrophones in the array. The data acquisition period for each pile was divided into 3 equal sample segments based on the total number of impacts per pile-driving event. There is a great deal of variability in peak sound pressures during the driving of any given pile for each of the hydrophones and among hydrophones in the array. This variability with time for each pile is readily apparent by visual inspection of the impact impulse peak data shown in the figures of Appendix A. The few peak and RMS pressure observations that did not exceed criteria were found near the beginning of a pile-driving event, probably when the pile was being driven through more loosely aggregated sediment and when the imbedded pile length was short. The distribution statistics for each pile are given in Appendix B; plots of distributions of peak and RMS pressure observations are provided in Appendix D.

### 3.4 Assessment of Bubble Curtain Effectiveness

The frequency content of an impulsive sound-signal contains information critical to understanding potential impacts to fish and other animals. In general, fish hearing sensitivity peaks at lower frequencies, whereas sounds that cause barotrauma are typically higher frequencies and associated rapid pressure rise times (Hastings and Popper 2005). An effective bubble curtain can mitigate the impact of these sounds on fish and other animals in two important ways: 1) by reducing the energy in the impulse, and 2 ) by reducing rise times by attenuating higher frequencies more than lower frequencies.

Neither the scope of work nor the design of this study permitted a comprehensive assessment of the effectiveness of the bubble curtain and containment device deployed by the pile-driving contractor. Assessment of bubble curtain effectiveness would require curtain on/curtain off cycles for individual piles, and controls for other variables that could affect the characteristics of sound impulses. In addition, because of the effects of attenuation, spreading, and other factors on a propagating sound impulse, comparisons of sound impulses during curtain on/curtain off need to be made using the same hydrophones at known locations relative to the pile. Information regarding the original bubble curtain specifications for this project is found in Appendix F.

Figure 18a


Figure 18b


Figure 18. Power Spectral Density Indices (Figure 18a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 18b) for a Single Pile-Driving Impact Measured at Plumb Pile 238, Driven in 7 ft of Water with Bubble Curtain. On the cumulative sound plot, the vertical lines represent the point in time when the summed squared sound pressures of the waveform total $95 \%$ of the sound energy.

## Figure 19a



Figure 19b


Figure 19. Power Spectral Density Indices (Figure 19a: H1 top plot, H2 middle plot, H3 bottom plot) and Cumulative Sound Exposure Over Time (Figure 19b) for a Single Pile-Driving Impact Measured at Plumb Pile 240, Driven in 9 ft of Water Without Bubble Curtain. On the cumulative sound plot, the vertical lines represent the point in time when the summed squared sound pressures of the waveform total $95 \%$ of the sound energy.

Table 6. Percentage of Impacts at each Hydrophone that Exceeded Threshold Values for Protection of Marine Life

| Pile ID | Pile Type | Bubble Curtain | Hydrophone H1 |  |  | Hydrophone H2 |  |  | Hydrophone H3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Number of Impacts | $\begin{aligned} & \text { Threshold } \\ & >1000 \\ & \text { Pa PEAK (\%) } \end{aligned}$ | $\begin{gathered} \text { Threshold } \\ >31.6 \\ \text { Pa }_{\text {RMs }} \text { (\%) } \end{gathered}$ | Number of Impacts | $\begin{aligned} & \text { Threshold } \\ & >1000 \\ & \text { Pa } \end{aligned}$ | $\begin{gathered} \text { Threshold } \\ >31.6 \\ \text { Pa }_{\text {RMS }} \text { (\%) } \end{gathered}$ | Number of Impacts | $\begin{aligned} & \text { Threshold } \\ & >1000 \\ & \text { PаРЕАK (\%) } \end{aligned}$ | $\begin{aligned} & \text { Threshold } \\ & >31.6 \text { Pa } \\ & \text { (\%) } \end{aligned}$ |
| 121N | Plumb | Type II Confined | 317 | 100 | 100 | 299 | 100 | 100 | 294 | 99.7 | 99.7 |
| 52N | Plumb | Type II Confined | 107 | 100 | 100 | 107 | 100 | 100 | 107 | 100 | 100 |
| 118N | Plumb | Type II Confined | 203 | 99.5 | 100 | 202 | 100 | 100 | 200 | 100 | 100 |
| 255 | Plumb | Type II Confined | 134 | 100 | 100 | 234 | 100 | 100 | 234 | 100 | 100 |
| 249 | Plumb | Type II Confined | 506 | 100 | 100 | 506 | 100 | 100 | 505 | 98.4 | 100 |
| 252 | Plumb | Type II Confined | 256 | 100 | 100 | 256 | 100 | 100 | 253 | 98.7 | 100 |
| 172 | Plumb | Type II Confined | 194 | 99.0 | 100 | 194 | 100 | 100 | 188 | 98.4 | 100 |
| 171 | Plumb | Type II Confined | 405 | 100 | 100 | 405 | 100 | 100 | 397 | 98.2 | 100 |
| 238 | Plumb | Type II Confined | 218 | 99.5 | 100 | 216 | 98.6 | 100 | 204 | 98 | 100 |
| 235 | Plumb | Type II Confined | 257 | 100 | 100 | 257 | 100 | 100 | 257 | 99.6 | 100 |
| 237 | Plumb | Type II Confined | 368 | 100 | 100 | 368 | 100 | 100 | 366 | 97.8 | 100 |
| 50 N | Plumb | None | 334 | 99.7 | 99.7 | 334 | 100 | 100 | 335 | 99.7 | 100 |
| 120N | Plumb | None | 152 | 100 | 100 | 152 | 100 | 100 | 151 | 100 | 100 |
| 240 | Plumb | None | 297 | 100 | 100 | 298 | 99.3 | 100 | 296 | 99.3 | 100 |
| 182 | Batter | Type I Unconfined | 46 | 100 | 100 | 46 | 100 | 100 | 46 | 93.5 | 100 |
| 177 | Batter | Type I Unconfined | 28 | 92.9 | 96.4 | 26 | 96.2 | 100 | 21 | 61.9 | 100 |
| 174 | Batter | Type I Unconfined | 54 | 96.3 | 98.1 | 53 | 100 | 100 | 50 | 86 | 100 |
| 181 | Batter | Type I Unconfined | 46 | 98.0 | 98.0 | 47 | 97.9 | 100 | 45 | 82.2 | 97.8 |
| 167 | Batter | Type I Unconfined | 102 | 99.0 | 100 | 99 | 99.0 | 100 | 66 | 68.2 | 98.5 |
| 178 | Batter | None | 53 | 96.2 | 100 | 52 | 98.1 | 98.1 | 50 | 96 | 100 |
| 244 | Batter | None | 54 | 92.6 | 98.1 | 51 | 98.0 | 100 | 49 | 98 | 100 |

### 4.0 Discussion

Impulsive sound levels generated by pile driving during construction of a work trestle at the eastern approach of the Hood Canal Bridge were measured in September, October, and November 2004. As designed, the hydroacoustic data acquisition accomplished the objectives of measuring sound-pressure levels under a variety of pile type, water depth, and sound mitigation conditions. Variability within and between pile sound-impulse data sets for pressure metrics was a key feature of the data collected during this research effort.

The propagation of sound in shallow water is complex and does not usually follow that expected for freefield conditions. In free-field conditions, simplifying plane wave assumptions could be made and pressure would be expected to decrease primarily as a result of geometric spreading (for low frequencies, not considering scattering) as $20 \log _{10} \mathrm{~m}$ (the square of distance from the sound source), where " m " is the range from the sound source in meters. Therefore, the peak pressures observed at H 3 would be expected to be $15.6 \mathrm{~dB}_{\text {PEAK }} / / 1 \mu \mathrm{~Pa}$, or six times lower than those observed at H 1 . In the range of water depths and other monitoring conditions for the Hood Canal Bridge east approach site, the actual observed peak pressures at H 3 were only two to three times lower than H 1 at most pilings (Table 5). Sound attenuation in shallow water was found to be log-linear rather than geometric by Nedwell (2003) at $0.15 \mathrm{~dB}_{\text {PEAK }} / / \mu \mathrm{Pa}$ per m. Hood Canal Bridge study data were fit to a log-linear model of transmission loss by logtransforming peak positive pressure in Pa to $\mathrm{dB}_{\text {PEAK }} / / \mu \mathrm{Pa}$ and assuming a distance of 50 m between H 1 and H3. Summary statistics for plumb and batter piles, both individually and combined, are provided in Table 7. These data show that the loss rates were not significantly different for the two types of piles. The average rate of transmission loss from H 1 to H 3 of $0.145 \mathrm{~dB}_{\text {PEAK }} / / \mu$ Pa per m for all piles was comparable with Nedwell's (2003) estimate, which is notable because all Hood Canal measurements were conducted within 100 m of the source whereas Nedwell's transmission loss rate was developed from fewer samples (9) collected approximately 60 m to 230 m from the source.

Table 7. Summary Statistics for Transmission Loss Rates Between Hydrophones 1 and 3

| Summary Statistic |  | H1-H3 Transmission Loss (dB PEAK $/ / \boldsymbol{\mu}$ Pa per m) |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Batter Piles | All Piles |  |
| Mean | 0.132 | 0.171 | 0.145 |  |
| 95\% Confidence Interval of Mean | 0.027 | 0.031 | 0.021 |  |
| Median | 0.138 | 0.167 | 0.151 |  |
| Standard Deviation | 0.088 | 0.072 | 0.085 |  |
| Standard Error | 0.014 | 0.016 | 0.011 |  |
| Maximum | 0.277 | 0.401 | 0.401 |  |
| Minimum | -0.131 | 0.048 | -0.131 |  |
| Number of Samples | 42 | 21 | 63 |  |

Piles were generally driven with a bubble curtain in place as required by WSDOT to mitigate sound pressure. Our data indicated that the bubble curtain sound-mitigation device as deployed during the hydroacoustic study period was not effective at reducing RMS and peak positive sound pressures below the threshold values currently prescribed by resource agencies for protection of marine life. Both RMS peak positive protective thresholds were exceeded most of the time at all hydrophone locations for all piles. In general, lower levels of sound were observed in some cases for piles driven with a bubble curtain in place. However, many factors (e.g., substrate composition, hammer operation, bubble curtain
operational experience) influence the high variability observed in sound production both over the course of driving an individual pile and between piles, such that it was not possible to quantify the effectiveness of the bubble curtain as a single factor. There were additional difficulties with the monitoring related to the Contractors activities. For example, the study design and approach assumed that the bubble curtain would be deployed and operated per specifications, yet September 2004 observations of sound generated by pile driving with the bubble curtain in place found that the device was ineffective, because it was determined that the device was not meeting design specifications during that time. Although the device was later modified, it was still difficult to assess by field observations alone whether all aspects of the mitigation device were deployed and operated correctly. It was difficult to observe whether the bubble curtain confinement sleeve was in contact with the substrate, whereas it was relatively simple to observe whether the sleeve extended above the water surface. In addition, measurements of sound are, at best, an indirect means to assess the state of deployment and function of a mitigation device.

Another important consideration relative to evaluation of impulsive sound energy and potential effects on fish, birds, or other marine life, is that sound-pressure measurements alone do not completely characterize the sound field generated by pile driving. At short ranges from a sound source, much of the energy in the field is carried in particle displacement, whereas at longer ranges from the source, almost all of the sound energy is in the form of pressure. Therefore, measurements of acoustic particle velocity would be needed in addition to pressure to fully describe the sound field at the ranges relevant to pile driving and the potential effects on biota. Complete description of the sound field is necessary because the inner ear of many species of fish and, in particular, protected salmonid species, responds primarily to particle motion, not pressure. Therefore, although pressure is important for evaluation of potential barotrauma injury, particle velocity is also required to fully assess the potential for hearing system impact.

The quantitative evaluation of the performance of a sound mitigation device and identification of design and operation alternatives that might improve effectiveness require a substantially different study design than that for monitoring for compliance with threshold levels. The dynamics of typical pile driving make the design of studies to quantitatively and systematically evaluate sound mitigation measures very difficult. Yet improvements to the design and function of sound mitigation devices, both in terms of sound mitigation and integration into pile-driving construction activities, will not be possible without both measures of acoustic performance and observations that quantitatively document the performance of the device. The primary study design difficulty in evaluating the effectiveness of sound mitigation measures used in pile driving is that mitigation device on/off designs do not seem well suited to pile driving. Piledriving conditions are continually changing: the various depths of penetration of the pile, the differences in substrate with depth, and changes in hammer operations or other aspects of the pile-driving process during the course of driving a pile. The prospect for bias is evident: if "mitigation on" periods are early during pile driving and "mitigation off" later during pile driving, then the effectiveness of mitigation could likely be overestimated or vice-versa. Most important is that the primary challenge for the evaluation of sound mitigation device effectiveness is not in the design of a study that would meet statistical criteria, but in the implementation of a design in which the experimental requirements could impose time-consuming and costly constraints on normal construction activities. A benefit of studies designed to assess mitigation device effectiveness is that adequate data to satisfy compliance monitoring objectives would be available in a mitigation device evaluation data set.

### 5.0 Conclusions

The underwater sound pressure levels observed during this study lead to the following conclusions:

- The duration of an impact event or impulse was less than 1 sec; the median for plumb and batter piles was 0.0389 sec and 0.0581 sec , respectively.
- During pile driving, there were 7 to 8 impulses per second. The range of the number of impulses per pile driven was 107 to 505 for plumb plies and 21 to 102 for batter piles.
- The peak positive pressure values for all plumb pile impacts ranged from 177 Pa to $15,525 \mathrm{~Pa}$, averaging 6,376 Pa; RMS pressure values for all plumb pile impacts ranged from 23 Pa to $10,746 \mathrm{~Pa}$, averaging $1,957 \mathrm{~Pa}$. The peak positive pressure values for all batter pile impacts ranged from 185 Pa to $10,809 \mathrm{~Pa}$, averaging $3,125 \mathrm{~Pa}$; RMS pressure values for all batter pile impacts ranged from 17 Pa to $3,630 \mathrm{~Pa}$, averaging 816 Pa .
- There was a general decrease in sound-pressure levels with increased distance of monitoring hydrophones from the pile being driven.
- The sound pressure and spectral density (energy index per unit of frequency) data for sound impulses were highly variable among piles and monitoring locations. Many factors contribute to variability, including but not limited to pile type, wetted length of pile, substrate surface characteristics, changes in substrate with depth, pile-driving hammer settings and operation, and bubble curtain operation.
- Sound-pressure levels, both peak and RMS, consistently exceeded the threshold levels set for protection of marine life, which for this pile-driving project were $180 \mathrm{~dB} / / \mu \mathrm{Pa}\left(1000 \mathrm{~Pa}_{\text {РЕAK }}\right)$ and 150 $\mathrm{dB} / / \mu \mathrm{Pa}\left(31.6 \mathrm{~Pa}_{\mathrm{RMS}}\right)$, respectively.

The following suggestions are based on the study conclusions:

- Data collected as part of this program may be useful in a separate study to better understand the biological "effect zone" for the sound generated by pile driving.
- During future hydroacoustic studies, measurement of acoustic particle velocity in addition to pressure to would more fully describe the sound field at the ranges relevant to pile driving and potential effects on biota.
- Future monitoring efforts should consider assessing the effectiveness of pile driving sound mitigation devices such as bubble curtains using an experiment specifically designed to address that mitigation device.


### 6.0 References

Nedwell, J., A. Turnpenny, J. Langworthy, and B. Edwards. 2003. Measurements of underwater noise during piling at the Red Funnel Terminal, Southampton, and observations of its effect on caged fish. Report prepared for Red Funnel by Subacoustech Ltd. Subacoustech Ltd. report reference: 558 R 0207.

Urick, RJ. 1983. Prinicples of Underwater Sound. McGraw-Hill. New York, New York.

## APPENDIX A

## Plots of Sound-Pressure Levels Over Time for Each Pile-Driving Event



Figure A.1. Sound-Pressure Levels Measured by Hydrophones H1 (bottom), H2 (middle), and H3 (top) at Plumb Pile 121N Driven in 42 ft of Water with Bubble Curtain in Place


Figure A.2. Sound-Pressure Levels Measured by Hydrophones H1 (bottom), H2 (middle), and H3 (top) at Plumb Pile 52N Driven in 40 ft of Water with Bubble Curtain in Place


Figure A.3. Sound-Pressure Levels (Pa) Measured for Plumb Pile 118N Driven in 39 ft of Water with the Bubble Curtain in Place.


Figure A.4. Sound-Pressure Levels (Pa) Measured for Plumb Pile 255 Driven in 33 ft of Water with the Bubble Curtain in Place.


Figure A.5. Sound-Pressure Levels (Pa) Measured for Plumb Pile 249 Driven in 32 ft of Water with the Bubble Curtain in Place.


Figure A.6. Sound-Pressure Levels (Pa) Measured for Plumb Pile 252 Driven in 31 ft of Water with the Bubble Curtain in Place.


Figure A.7. Sound-Pressure Levels (Pa) Measured for Plumb Pile 172 Driven in 20 ft of Water with the Bubble Curtain in Place.


Figure A.8. Sound-Pressure Levels (Pa) Measured for Plumb Pile 171 Driven in 18 ft of Water with the Bubble Curtain in Place.


Figure A.9. Sound-Pressure Levels (Pa) Measured for Plumb Pile 238 Driven in 7 ft of Water with the Bubble Curtain in Place.


Figure A.10. Sound-Pressure Levels (Pa) Measured for Plumb Pile 235 Driven in 4.5 ft of Water with the Bubble Curtain in Place.


Figure A.11. Sound-Pressure Levels (Pa) Measured for Plumb Pile 237 Driven in 4 ft of Water with the Bubble Curtain in Place.


Figure A.12. Sound-Pressure Levels (Pa) Measured for Plumb Pile 50N Driven in 40 ft of Water with No Bubble Curtain.


Figure A.13. Sound-Pressure Levels (Pa) Measured for Plumb Pile 120N Driven in 39 ft of Water with No Bubble Curtain.


Figure A.14. Sound-Pressure Levels (Pa) Measured for Plumb Pile 240 Driven in 9 ft of Water with No Bubble Curtain.


Figure A.15. Sound-Pressure Levels (Pa) Measured for Batter Pile 182 Driven in 41 ft of Water with the Bubble Curtain in Place.


Figure A.16. Sound-Pressure Levels (Pa) Measured for Batter Pile 177 Driven in 37 ft of Water with the Bubble Curtain in Place.


Figure A.17. Sound-Pressure Levels ( Pa ) Measured for Batter Pile 174 Driven in 29 ft of Water with the Bubble Curtain in Place.


Figure A.18. Sound-Pressure Levels (Pa) Measured for Batter Pile 181 Driven in 7 ft of Water with the Bubble Curtain in Place.


Figure A.19. Sound-Pressure Levels (Pa) Measured for Batter Pile 167 Driven in 7 ft of Water with the Bubble Curtain in Place.


Figure A.20. Sound-Pressure Levels (Pa) Measured for Batter Pile 178 Driven in 37 ft of Water with No Bubble Curtain.


Figure A.21. Sound-Pressure Levels (Pa) Measured for Batter Pile 244 Driven in 7 ft of Water with No Bubble Curtain.

## APPENDIX B

Tabulated Distribution Statistics of Impulse Sound Metrics for Each Pile-Driving Event

Table B.1. Distribution Statistics for Root Mean Square (RMS) Sound Pressure Level During the 95th Percentile Pulse Duration of Each Strike in a Series on the Indicated Pile

| $\begin{gathered} \text { Pile } \\ \text { ID } \end{gathered}$ | Impact Time <br> Series |  | Hydrophone | Number of Impacts | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th <br> (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 121N | 1st | 3rd |  | H1 | 98 | 791 | 1234 | 1618 | 1834 | 2287 | 2337 | 642 | 2875 | 3178 | 3404 | 3728 |
| 121N | 1st | 3rd | H2 | 98 | 1263 | 1436 | 1521 | 1607 | 1749 | 1812 | 273 | 1989 | 2252 | 2356 | 2521 |
| 121 N | 1st | 3rd | H3 | 97 | 526 | 658 | 683 | 778 | 893 | 906 | 164 | 1065 | 1106 | 1131 | 1222 |
| 121N | 2nd | 3rd | H1 | 99 | 774 | 904 | 1023 | 1139 | 1227 | 1321 | 301 | 1546 | 1815 | 1881 | 2065 |
| 121N | 2nd | 3rd | H2 | 99 | 570 | 653 | 673 | 703 | 755 | 875 | 243 | 964 | 1294 | 1379 | 1571 |
| 121N | 2nd | 3rd | H3 | 98 | 245 | 268 | 276 | 293 | 323 | 401 | 139 | 521 | 629 | 682 | 760 |
| 121N | Last | 3rd | H1 | 99 | 62 | 1011 | 1212 | 2134 | 2233 | 2154 | 533 | 2500 | 2665 | 2754 | 2959 |
| 121N | Last | 3rd | H2 | 99 | 36 | 705 | 765 | 1528 | 1630 | 1532 | 364 | 1734 | 1845 | 1911 | 2016 |
| 121N | Last | 3rd | H3 | 99 | 23 | 287 | 297 | 783 | 874 | 800 | 232 | 947 | 1005 | 1022 | 1081 |
| 52N | 1st | 3rd | H1 | 35 | 808 | 1438 | 1755 | 2012 | 2189 | 2117 | 326 | 2295 | 2402 | 2465 | 2610 |
| 52N | 1st | 3rd | H2 | 35 | 1082 | 1383 | 1791 | 1863 | 2046 | 2063 | 338 | 2289 | 2521 | 2569 | 2769 |
| 52N | 1st | 3rd | H3 | 35 | 442 | 793 | 959 | 1054 | 1194 | 1151 | 188 | 1285 | 1328 | 1348 | 1368 |
| 52N | 2nd | 3rd | H1 | 36 | 1887 | 2020 | 2105 | 2164 | 2362 | 2343 | 211 | 2486 | 2666 | 2717 | 2741 |
| 52N | 2nd | 3rd | H2 | 36 | 1974 | 2123 | 2212 | 2489 | 2769 | 2912 | 538 | 3500 | 3591 | 3657 | 3771 |
| 52N | 2nd | 3rd | H3 | 36 | 1026 | 1045 | 1112 | 1173 | 1220 | 1227 | 100 | 1277 | 1373 | 1396 | 1481 |
| 52N | Last | 3rd | H1 | 36 | 350 | 490 | 772 | 2214 | 2378 | 2173 | 649 | 2534 | 2622 | 2766 | 2992 |
| 52N | Last | 3rd | H2 | 36 | 804 | 941 | 1851 | 3248 | 3568 | 3340 | 857 | 3821 | 4093 | 4297 | 4498 |
| 52N | Last | 3rd | H3 | 36 | 204 | 243 | 392 | 1195 | 1274 | 1127 | 340 | 1291 | 1328 | 1360 | 1419 |
| 118N | 1st | 3rd | H1 | 67 | 678 | 1499 | 1813 | 2158 | 2349 | 2288 | 385 | 2510 | 2668 | 2794 | 2963 |
| 118N | 1st | 3rd | H2 | 67 | 359 | 602 | 640 | 861 | 1060 | 997 | 236 | 1167 | 1240 | 1271 | 1350 |
| 118N | 1st | 3rd | H3 | 66 | 53 | 263 | 302 | 329 | 360 | 357 | 63 | 382 | 420 | 450 | 525 |
| 118N | 2nd | 3rd | H1 | 68 | 1394 | 1496 | 1526 | 1675 | 1770 | 1806 | 205 | 1924 | 2098 | 2147 | 2298 |
| 118N | 2nd | 3rd | H2 | 67 | 983 | 1000 | 1019 | 1055 | 1118 | 1119 | 78 | 1166 | 1233 | 1250 | 1309 |
| 118N | 2nd | 3rd | H3 | 67 | 360 | 373 | 383 | 406 | 441 | 447 | 53 | 483 | 513 | 547 | 579 |
| 118N | Last | 3rd | H1 | 68 | 48 | 1224 | 1589 | 1731 | 1901 | 1858 | 396 | 2114 | 2207 | 2242 | 2757 |
| 118N | Last | 3rd | H2 | 68 | 358 | 1130 | 1144 | 1195 | 1246 | 1227 | 171 | 1298 | 1344 | 1369 | 1639 |
| 118N | Last | 3rd | H3 | 67 | 266 | 455 | 463 | 489 | 515 | 511 | 46 | 542 | 556 | 577 | 591 |

Table B.1. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $50^{\text {th }}$ (Median) | Average | st dev | $75^{\text {th }}$ | 90 ${ }^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ |  | H1 | 77 | 1737 | 1932 | 2108 | 2403 | 2619 | 2577 | 311 | 2824 | 2939 | 2998 | 3109 |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 77 | 1572 | 1679 | 1903 | 2171 | 2287 | 2231 | 218 | 2382 | 2434 | 2466 | 2585 |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 77 | 108 | 213 | 263 | 407 | 551 | 612 | 574 | 603 | 710 | 1840 | 4002 |
| 255 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 78 | 1643 | 1752 | 1771 | 2022 | 2355 | 2279 | 299 | 2529 | 2604 | 2618 | 2657 |
| 255 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 78 | 1284 | 1298 | 1349 | 1572 | 1836 | 1783 | 279 | 2007 | 2116 | 2153 | 2337 |
| 255 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 78 | 118 | 145 | 160 | 258 | 339 | 424 | 501 | 399 | 502 | 1010 | 3487 |
| 255 | Last | $3^{\text {rd }}$ | H1 | 79 | 461 | 1339 | 1374 | 1457 | 1573 | 1556 | 183 | 1672 | 1736 | 1793 | 1825 |
| 255 | Last | $3^{\text {rd }}$ | H2 | 79 | 387 | 1156 | 1164 | 1204 | 1315 | 1334 | 186 | 1476 | 1567 | 1638 | 1702 |
| 255 | Last | $3^{\text {rd }}$ | H3 | 79 | 122 | 151 | 167 | 228 | 323 | 337 | 132 | 446 | 534 | 582 | 604 |
| 249 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 168 | 451 | 1027 | 1253 | 1895 | 2080 | 1971 | 445 | 2251 | 2381 | 2442 | 2709 |
| 249 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H2 | 168 | 327 | 1012 | 1365 | 1676 | 1953 | 1936 | 516 | 2297 | 2591 | 2743 | 3065 |
| 249 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 168 | 53 | 107 | 146 | 170 | 241 | 284 | 142 | 403 | 504 | 545 | 630 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 168 | 329 | 1664 | 1709 | 1807 | 1910 | 2000 | 378 | 2095 | 2394 | 3019 | 3274 |
| 249 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 168 | 189 | 1607 | 1633 | 1710 | 1834 | 1871 | 276 | 2039 | 2235 | 2320 | 2575 |
| 249 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 168 | 175 | 211 | 229 | 387 | 579 | 518 | 172 | 653 | 705 | 721 | 785 |
| 249 | Last | $3^{\text {rd }}$ | H1 | 170 | 662 | 1574 | 1597 | 1677 | 1830 | 1886 | 273 | 2078 | 2286 | 2339 | 2602 |
| 249 | Last | $3^{\text {rd }}$ | H2 | 170 | 489 | 1672 | 1732 | 1813 | 1897 | 1881 | 167 | 1963 | 2060 | 2101 | 2223 |
| 249 | Last | $3^{\text {rd }}$ | H3 | 169 | 86 | 196 | 206 | 302 | 540 | 481 | 178 | 625 | 679 | 699 | 791 |
| 252 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 85 | 171 | 832 | 888 | 1305 | 1766 | 1662 | 487 | 2017 | 2211 | 2297 | 2448 |
| 252 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 85 | 125 | 671 | 780 | 1204 | 1507 | 1370 | 343 | 1621 | 1669 | 1726 | 1905 |
| 252 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 84 | 34 | 76 | 87 | 122 | 177 | 209 | 109 | 287 | 356 | 426 | 496 |
| 252 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 85 | 1909 | 1986 | 2050 | 2564 | 3106 | 3119 | 751 | 3696 | 4282 | 4321 | 4454 |
| 252 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 85 | 1161 | 1223 | 1255 | 1384 | 1505 | 1607 | 339 | 1763 | 2184 | 2444 | 2541 |
| 252 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 84 | 108 | 120 | 126 | 157 | 224 | 258 | 130 | 322 | 462 | 546 | 608 |
| 252 | Last | $3^{\text {rd }}$ | H1 | 86 | 1959 | 3927 | 3948 | 4063 | 4175 | 4136 | 275 | 4236 | 4317 | 4378 | 4506 |
| 252 | Last | $3^{\text {rd }}$ | H2 | 86 | 1159 | 2362 | 2426 | 2523 | 2597 | 2621 | 236 | 2759 | 2910 | 2930 | 2990 |
| 252 | Last | $3^{\text {rd }}$ | H3 | 85 | 157 | 199 | 234 | 350 | 433 | 446 | 150 | 560 | 655 | 711 | 748 |
| 172 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 64 | 40 | 102 | 405 | 702 | 1441 | 1488 | 947 | 2136 | 2906 | 3164 | 3570 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 64 | 97 | 227 | 831 | 1247 | 2301 | 2056 | 1000 | 2779 | 3351 | 3548 | 3685 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 62 | 58 | 119 | 153 | 382 | 809 | 670 | 339 | 943 | 1053 | 1071 | 1107 |

Table B.1. (continued)

| $\begin{gathered} \text { Pile } \\ \text { ID } \end{gathered}$ |  |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \\ \hline \end{gathered}$ | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ |  | H1 | 65 | 3608 | 3916 | 4234 | 5130 | 6280 | 5816 | 930 | 6465 | 6688 | 6722 | 6870 |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 65 | 3844 | 4046 | 4555 | 6265 | 6767 | 6367 | 991 | 6947 | 7129 | 7240 | 7323 |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 63 | 867 | 887 | 894 | 937 | 992 | 985 | 60 | 1037 | 1048 | 1052 | 1123 |
| 172 | Last | $3^{\text {rd }}$ | H1 | 65 | 4118 | 5762 | 5915 | 6093 | 6341 | 6321 | 449 | 6533 | 6900 | 7018 | 7169 |
| 172 | Last | $3^{\text {rd }}$ | H2 | 65 | 4489 | 6453 | 6473 | 6665 | 8002 | 7884 | 1375 | 9129 | 9695 | 9972 | 10746 |
| 172 | Last | $3{ }^{\text {rd }}$ | H3 | 63 | 413 | 821 | 840 | 850 | 888 | 907 | 100 | 955 | 1044 | 1084 | 1102 |
| 171 | 1st | 3rd | H1 | 134 | 266 | 656 | 827 | 1382 | 2041 | 1967 | 807 | 2764 | 2939 | 2991 | 3105 |
| 171 | 1st | 3rd | H2 | 134 | 224 | 558 | 645 | 1480 | 2404 | 2327 | 1110 | 3360 | 3446 | 3501 | 3813 |
| 171 | 1st | 3rd | H3 | 132 | 143 | 197 | 261 | 658 | 964 | 823 | 324 | 1062 | 1170 | 1229 | 1287 |
| 171 | 2nd | 3rd | H1 | 135 | 383 | 1903 | 2043 | 2167 | 2719 | 2612 | 504 | 3031 | 3134 | 3210 | 3554 |
| 171 | 2nd | 3rd | H2 | 135 | 395 | 3044 | 3161 | 3347 | 3574 | 3546 | 403 | 3799 | 3957 | 4000 | 4168 |
| 171 | 2nd | 3rd | H3 | 132 | 832 | 911 | 939 | 964 | 1005 | 1015 | 82 | 1059 | 1105 | 1127 | 1486 |
| 171 | Last | 3rd | H1 | 136 | 304 | 2589 | 2692 | 2951 | 3155 | 3189 | 578 | 3427 | 3820 | 4144 | 4775 |
| 171 | Last | 3rd | H2 | 136 | 257 | 2836 | 3160 | 3380 | 3553 | 3613 | 642 | 3910 | 4242 | 4617 | 5586 |
| 171 | Last | 3rd | H3 | 133 | 192 | 884 | 920 | 1020 | 1361 | 1272 | 294 | 1499 | 1598 | 1636 | 1958 |
| 238 | 1st | 3rd | H1 | 72 | 112 | 184 | 322 | 573 | 719 | 794 | 444 | 877 | 1628 | 1954 | 2037 |
| 238 | 1st | 3rd | H2 | 71 | 45 | 124 | 153 | 331 | 610 | 913 | 751 | 1331 | 2172 | 2434 | 2502 |
| 238 | 1st | 3rd | H3 | 67 | 54 | 84 | 116 | 232 | 587 | 626 | 460 | 1032 | 1391 | 1410 | 1458 |
| 238 | 2nd | 3rd | H1 | 73 | 966 | 1216 | 1278 | 1609 | 1910 | 1960 | 487 | 2474 | 2581 | 2661 | 2764 |
| 238 | 2nd | 3rd | H2 | 72 | 1824 | 1871 | 2064 | 2383 | 2540 | 2511 | 296 | 2749 | 2865 | 2888 | 2999 |
| 238 | 2nd | 3rd | H3 | 68 | 925 | 1051 | 1089 | 1185 | 1251 | 1284 | 149 | 1430 | 1484 | 1496 | 1566 |
| 238 | Last | 3rd | H1 | 73 | 2524 | 2747 | 2854 | 3007 | 3295 | 3265 | 322 | 3514 | 3701 | 3728 | 3852 |
| 238 | Last | 3rd | H2 | 73 | 2396 | 2538 | 2623 | 2743 | 2921 | 2943 | 270 | 3076 | 3309 | 3515 | 3634 |
| 238 | Last | 3rd | H3 | 69 | 788 | 994 | 1002 | 1031 | 1064 | 1085 | 95 | 1114 | 1244 | 1293 | 1443 |
| 235 | 1st | 3rd | H1 | 85 | 420 | 932 | 1151 | 1563 | 1795 | 1715 | 411 | 2011 | 2164 | 2249 | 2563 |
| 235 | 1st | 3rd | H2 | 85 | 293 | 861 | 1030 | 1243 | 1487 | 1447 | 373 | 1684 | 1785 | 1888 | 2441 |
| 235 | 1st | 3rd | H3 | 85 | 87 | 410 | 493 | 883 | 1170 | 1204 | 500 | 1681 | 1740 | 1823 | 2076 |
| 235 | 2nd | 3rd | H1 | 86 | 1386 | 1831 | 1959 | 2281 | 2658 | 2639 | 493 | 3030 | 3228 | 3370 | 3687 |
| 235 | 2nd | 3rd | H2 | 86 | 1727 | 2121 | 2195 | 2331 | 2523 | 2547 | 287 | 2787 | 2909 | 2993 | 3125 |
| 235 | 2nd | 3rd | H3 | 86 | 1106 | 1238 | 1305 | 1410 | 1568 | 1554 | 186 | 1703 | 1785 | 1825 | 1892 |

Table B.1. (continued)

|  |  |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \\ \hline \end{gathered}$ | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pile ID |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 235 | Last | 3rd |  | H1 | 86 | 1326 | 1537 | 1638 | 1723 | 1830 | 2135 | 710 | 2148 | 3649 | 3722 | 4136 |
| 235 | Last | 3rd | H2 | 86 | 1276 | 1422 | 1478 | 1563 | 1700 | 1813 | 364 | 1905 | 2496 | 2604 | 2904 |
| 235 | Last | 3rd | H3 | 86 | 717 | 1186 | 1210 | 1243 | 1296 | 1290 | 89 | 1352 | 1375 | 1383 | 1435 |
| 237 | 1st | 3rd | H1 | 122 | 261 | 655 | 922 | 2048 | 2372 | 2226 | 653 | 2667 | 2874 | 2952 | 3173 |
| 237 | 1st | 3rd | H2 | 122 | 102 | 574 | 931 | 1418 | 1542 | 1504 | 428 | 1725 | 1985 | 2022 | 2621 |
| 237 | 1st | 3rd | H3 | 121 | 60 | 110 | 226 | 556 | 1043 | 862 | 391 | 1166 | 1248 | 1329 | 1458 |
| 237 | 2nd | 3rd | H1 | 123 | 1419 | 1474 | 1526 | 1712 | 1959 | 1911 | 271 | 2071 | 2201 | 2284 | 2697 |
| 237 | 2nd | 3rd | H2 | 123 | 1564 | 1722 | 1812 | 1923 | 2079 | 2153 | 330 | 2276 | 2668 | 2847 | 2988 |
| 237 | 2nd | 3rd | H3 | 122 | 1015 | 1140 | 1159 | 1216 | 1267 | 1304 | 141 | 1368 | 1502 | 1552 | 1785 |
| 237 | Last | 3rd | H1 | 123 | 578 | 2028 | 2055 | 2116 | 2341 | 2295 | 246 | 2472 | 2563 | 2594 | 2674 |
| 237 | Last | 3rd | H2 | 123 | 610 | 1900 | 1916 | 1981 | 2131 | 2113 | 210 | 2261 | 2333 | 2387 | 2467 |
| 237 | Last | 3rd | H3 | 123 | 413 | 1385 | 1421 | 1501 | 1624 | 1664 | 253 | 1818 | 2045 | 2091 | 2194 |
| 50N | 1st | 3rd | H1 | 111 | 244 | 776 | 1390 | 2050 | 2187 | 2083 | 506 | 2384 | 2553 | 2635 | 2745 |
| 50N | 1st | 3rd | H2 | 111 | 215 | 920 | 1291 | 1788 | 2187 | 2022 | 513 | 2358 | 2492 | 2587 | 2682 |
| 50N | 1st | 3rd | H3 | 111 | 60 | 1031 | 2089 | 2628 | 3018 | 2875 | 758 | 3411 | 3619 | 3743 | 3968 |
| 50N | 2nd | 3rd | H1 | 111 | 1848 | 1974 | 2008 | 2042 | 2103 | 2137 | 129 | 2234 | 2336 | 2354 | 2459 |
| 50N | 2nd | 3rd | H2 | 111 | 1958 | 2113 | 2142 | 2255 | 2341 | 2332 | 136 | 2423 | 2486 | 2529 | 2677 |
| 50N | 2nd | 3rd | H3 | 112 | 2101 | 2301 | 2395 | 2588 | 2769 | 2742 | 242 | 2917 | 3028 | 3118 | 3317 |
| 50N | Last | 3rd | H1 | 112 | 28 | 468 | 1759 | 1825 | 2056 | 1895 | 468 | 2130 | 2195 | 2222 | 2277 |
| 50N | Last | 3rd | H2 | 112 | 50 | 525 | 1790 | 1885 | 2128 | 1972 | 485 | 2227 | 2294 | 2325 | 2355 |
| 50N | Last | 3rd | H3 | 112 | 103 | 767 | 2290 | 2495 | 2625 | 2514 | 589 | 2835 | 2946 | 2980 | 3080 |
| 120N | 1st | 3rd | H1 | 50 | 574 | 1304 | 1528 | 1845 | 2576 | 2520 | 750 | 3279 | 3466 | 3591 | 3616 |
| 120N | 1st | 3rd | H2 | 50 | 500 | 916 | 1145 | 1504 | 1941 | 1953 | 627 | 2566 | 2763 | 2953 | 3011 |
| 120N | 1st | 3rd | H3 | 50 | 299 | 703 | 858 | 1046 | 1347 | 1342 | 394 | 1707 | 1848 | 1909 | 1952 |
| 120N | 2nd | 3rd | H1 | 51 | 3140 | 3266 | 3437 | 3589 | 3728 | 3723 | 251 | 3864 | 4040 | 4177 | 4290 |
| 120N | 2nd | 3rd | H2 | 51 | 2334 | 2401 | 2440 | 2496 | 2638 | 2640 | 176 | 2772 | 2912 | 2945 | 2998 |
| 120N | 2nd | 3rd | H3 | 50 | 1434 | 1500 | 1525 | 1591 | 1695 | 1707 | 136 | 1812 | 1895 | 1936 | 1939 |
| 120N | Last | 3rd | H1 | 51 | 439 | 1376 | 3822 | 3930 | 4104 | 3897 | 870 | 4349 | 4424 | 4448 | 4528 |
| 120N | Last | 3rd | H2 | 51 | 230 | 784 | 2339 | 2681 | 2847 | 2663 | 636 | 2937 | 3047 | 3079 | 3133 |
| 120N | Last | 3rd | H3 | 51 | 423 | 730 | 1624 | 1706 | 1766 | 1684 | 302 | 1812 | 1844 | 1866 | 1927 |

Table B.1. (continued)

| Pile ID | Impact <br> Time <br> Series |  | Hydrophone | Number of Impacts | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 240 | 1st | 3rd |  | H1 | 98 | 133 | 801 | 1159 | 1842 | 2309 | 2330 | 880 | 2904 | 3648 | 3800 | 4022 |
| 240 | 1st | 3rd | H2 | 99 | 52 | 659 | 944 | 1553 | 1894 | 2049 | 877 | 2496 | 3471 | 3555 | 3680 |
| 240 | 1st | 3rd | H3 | 98 | 37 | 435 | 621 | 1020 | 1229 | 1233 | 429 | 1459 | 1832 | 1896 | 1947 |
| 240 | 2nd | 3rd | H1 | 99 | 2268 | 2359 | 2394 | 2477 | 2889 | 2953 | 492 | 3337 | 3696 | 3884 | 4009 |
| 240 | 2nd | 3rd | H2 | 99 | 2204 | 2297 | 2493 | 2703 | 3347 | 3242 | 572 | 3719 | 3954 | 4165 | 4308 |
| 240 | 2nd | 3rd | H3 | 99 | 1513 | 1616 | 1658 | 1725 | 1805 | 1851 | 167 | 1971 | 2096 | 2165 | 2206 |
| 240 | Last | 3rd | H1 | 100 | 2138 | 2515 | 2562 | 2750 | 3056 | 3150 | 484 | 3603 | 3815 | 3931 | 4399 |
| 240 | Last | 3rd | H2 | 100 | 34 | 1955 | 2027 | 2137 | 2251 | 2238 | 298 | 2374 | 2482 | 2566 | 2829 |
| 240 | Last | 3rd | H3 | 99 | 694 | 1550 | 1573 | 1617 | 1676 | 1672 | 129 | 1733 | 1808 | 1824 | 1883 |
| 182 | 1st | 3rd | H1 | 15 | 132 | 132 | 194 | 406 | 600 | 659 | 369 | 921 | 1260 | 1358 | 1358 |
| 182 | 1st | 3rd | H2 | 15 | 116 | 116 | 185 | 419 | 776 | 762 | 409 | 1085 | 1338 | 1399 | 1399 |
| 182 | 1st | 3rd | H3 | 15 | 105 | 105 | 109 | 233 | 467 | 458 | 261 | 685 | 790 | 946 | 946 |
| 182 | 2nd | 3rd | H1 | 15 | 956 | 956 | 1160 | 1524 | 1876 | 1727 | 346 | 1954 | 2068 | 2129 | 2129 |
| 182 | 2nd | 3rd | H2 | 15 | 898 | 898 | 1260 | 1469 | 1969 | 1797 | 378 | 2072 | 2084 | 2121 | 2121 |
| 182 | 2nd | 3rd | H3 | 15 | 393 | 393 | 470 | 615 | 728 | 702 | 158 | 805 | 919 | 938 | 938 |
| 182 | Last | 3rd | H1 | 16 | 1829 | 1829 | 1873 | 2005 | 2072 | 2070 | 120 | 2140 | 2238 | 2295 | 2295 |
| 182 | Last | 3rd | H2 | 16 | 1983 | 1983 | 2028 | 2215 | 2284 | 2281 | 147 | 2371 | 2477 | 2563 | 2563 |
| 182 | Last | 3rd | H3 | 16 | 615 | 615 | 670 | 677 | 740 | 726 | 51 | 761 | 784 | 802 | 802 |
| 177 | 1st | 3rd | H1 | 9 | 26 | 26 | 26 | 43 | 534 | 405 | 291 | 594 | 776 | 776 | 776 |
| 177 | 1st | 3rd | H2 | 8 | 52 | 52 | 52 | 521 | 629 | 666 | 348 | 908 | 1161 | 1161 | 1161 |
| 177 | 1st | 3rd | H3 | 6 | 116 | 116 | 116 | 118 | 185 | 184 | 64 | 240 | 256 | 256 | 256 |
| 177 | 2nd | 3rd | H1 | 9 | 172 | 172 | 172 | 295 | 476 | 612 | 438 | 915 | 1318 | 1318 | 1318 |
| 177 | 2nd | 3rd | H2 | 9 | 184 | 184 | 184 | 270 | 311 | 524 | 389 | 638 | 1289 | 1289 | 1289 |
| 177 | 2nd | 3rd | H3 | 7 | 57 | 57 | 57 | 63 | 143 | 208 | 162 | 376 | 457 | 457 | 457 |
| 177 | Last | 3rd | H1 | 10 | 315 | 315 | 316 | 332 | 340 | 489 | 251 | 648 | 922 | 988 | 988 |
| 177 | Last | 3rd | H2 | 9 | 219 | 219 | 219 | 236 | 347 | 341 | 117 | 397 | 591 | 591 | 591 |
| 177 | Last | 3rd | H3 | 8 | 57 | 57 | 57 | 80 | 107 | 111 | 39 | 143 | 173 | 173 | 173 |
| 174 | 1st | 3rd | H1 | 17 | 27 | 27 | 110 | 543 | 636 | 678 | 346 | 758 | 1102 | 1394 | 1394 |
| 174 | 1st | 3rd | H2 | 17 | 181 | 181 | 528 | 707 | 924 | 905 | 350 | 1013 | 1177 | 1890 | 1890 |
| 174 | 1st | 3rd | H3 | 16 | 93 | 93 | 95 | 188 | 303 | 295 | 159 | 368 | 442 | 726 | 726 |

Table B.1. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 174 | 2nd | 3rd |  | H1 | 18 | 153 | 153 | 173 | 264 | 302 | 306 | 103 | 335 | 411 | 619 | 619 |
| 174 | 2nd | 3rd | H2 | 18 | 179 | 179 | 298 | 411 | 477 | 521 | 204 | 601 | 814 | 1010 | 1010 |
| 174 | 2nd | 3rd | H3 | 17 | 47 | 47 | 50 | 77 | 94 | 104 | 47 | 127 | 158 | 238 | 238 |
| 174 | Last | 3rd | H1 | 19 | 345 | 345 | 353 | 609 | 847 | 830 | 293 | 1076 | 1202 | 1252 | 1252 |
| 174 | Last | 3rd | H2 | 18 | 219 | 219 | 605 | 1168 | 1378 | 1279 | 372 | 1475 | 1659 | 1753 | 1753 |
| 174 | Last | 3rd | H3 | 17 | 97 | 97 | 100 | 130 | 165 | 184 | 69 | 240 | 288 | 293 | 293 |
| 181 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 16 | 25 | 25 | 124 | 367 | 803 | 746 | 447 | 1055 | 1300 | 1612 | 1612 |
| 181 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H2 | 15 | 124 | 124 | 175 | 264 | 637 | 587 | 308 | 859 | 1030 | 1063 | 1063 |
| 181 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 14 | 17 | 17 | 103 | 155 | 314 | 275 | 143 | 403 | 418 | 444 | 444 |
| 181 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 16 | 186 | 186 | 380 | 457 | 561 | 599 | 209 | 791 | 858 | 939 | 939 |
| 181 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 16 | 265 | 265 | 279 | 333 | 383 | 418 | 112 | 500 | 583 | 608 | 608 |
| 181 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 15 | 109 | 109 | 116 | 128 | 180 | 163 | 35 | 196 | 198 | 198 | 198 |
| 181 | Last | $3^{\text {rd }}$ | H1 | 17 | 551 | 551 | 982 | 1264 | 1671 | 1494 | 396 | 1754 | 1889 | 1938 | 1938 |
| 181 | Last | $3^{\text {rd }}$ | H2 | 16 | 204 | 204 | 671 | 815 | 992 | 924 | 250 | 1062 | 1202 | 1206 | 1206 |
| 181 | Last | $3^{\text {rd }}$ | H3 | 16 | 207 | 207 | 209 | 264 | 354 | 341 | 89 | 418 | 433 | 469 | 469 |
| 167 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 33 | 91 | 273 | 314 | 394 | 869 | 1230 | 1057 | 1765 | 3061 | 3504 | 3630 |
| 167 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H2 | 32 | 95 | 113 | 117 | 196 | 394 | 654 | 583 | 1042 | 1586 | 1876 | 1978 |
| 167 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 21 | 31 | 65 | 141 | 255 | 324 | 367 | 218 | 450 | 595 | 735 | 949 |
| 167 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 34 | 656 | 798 | 857 | 969 | 1096 | 1230 | 466 | 1267 | 2016 | 2171 | 2956 |
| 167 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 33 | 174 | 199 | 224 | 256 | 346 | 410 | 203 | 481 | 696 | 823 | 1045 |
| 167 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 22 | 81 | 132 | 167 | 242 | 282 | 268 | 72 | 321 | 326 | 343 | 369 |
| 167 | Last | $3^{\text {rd }}$ | H1 | 35 | 1077 | 1124 | 1202 | 1445 | 1866 | 1773 | 392 | 2098 | 2205 | 2473 | 2474 |
| 167 | Last | $3^{\text {rd }}$ | H2 | 34 | 250 | 286 | 345 | 382 | 481 | 496 | 136 | 628 | 676 | 714 | 718 |
| 167 | Last | $3^{\text {rd }}$ | H3 | 23 | 138 | 213 | 229 | 265 | 311 | 292 | 52 | 332 | 343 | 345 | 348 |
| 178 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 17 | 40 | 40 | 52 | 267 | 428 | 750 | 660 | 1446 | 1749 | 1887 | 1887 |
| 178 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H2 | 17 | 28 | 28 | 215 | 567 | 1019 | 1058 | 622 | 1447 | 2041 | 2151 | 2151 |
| 178 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 16 | 60 | 60 | 63 | 177 | 307 | 361 | 239 | 568 | 703 | 761 | 761 |
| 178 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 18 | 420 | 420 | 432 | 770 | 1337 | 1226 | 561 | 1756 | 1909 | 2052 | 2052 |
| 178 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 17 | 742 | 742 | 1070 | 2234 | 2803 | 2379 | 777 | 2887 | 3086 | 3274 | 3274 |
| 178 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 17 | 280 | 280 | 313 | 423 | 631 | 561 | 137 | 657 | 692 | 699 | 699 |

Table B.1. (continued)

| $\begin{gathered} \text { Pile } \\ \text { ID } \\ \hline \end{gathered}$ |  |  | Hydrophone | Number of Impacts | Root Mean Square Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 178 | Last | $3^{\text {rd }}$ |  | H1 | 18 | 965 | 965 | 988 | 1015 | 1427 | 1432 | 381 | 1787 | 1991 | 2081 | 2081 |
| 178 | Last | $3^{\text {rd }}$ | H2 | 18 | 2709 | 2709 | 2897 | 3069 | 3277 | 3214 | 227 | 3383 | 3468 | 3505 | 3505 |
| 178 | Last | $3^{\text {rd }}$ | H3 | 17 | 399 | 399 | 401 | 465 | 597 | 558 | 101 | 632 | 664 | 705 | 705 |
| 244 | 1st | 3rd | H1 | 17 | 26 | 26 | 33 | 598 | 1200 | 1016 | 656 | 1292 | 1984 | 1986 | 1986 |
| 244 | 1st | 3rd | H2 | 16 | 41 | 41 | 459 | 732 | 846 | 946 | 499 | 1106 | 1857 | 2102 | 2102 |
| 244 | 1st | 3rd | H3 | 16 | 272 | 272 | 288 | 466 | 628 | 630 | 262 | 712 | 1039 | 1257 | 1257 |
| 244 | 2nd | 3rd | H1 | 18 | 107 | 107 | 318 | 567 | 925 | 1017 | 679 | 1143 | 2458 | 2759 | 2759 |
| 244 | 2nd | 3rd | H2 | 17 | 86 | 86 | 276 | 672 | 832 | 806 | 426 | 925 | 1170 | 2078 | 2078 |
| 244 | 2nd | 3rd | H3 | 16 | 147 | 147 | 249 | 417 | 454 | 492 | 251 | 524 | 721 | 1284 | 1284 |
| 244 | Last | 3rd | H1 | 19 | 734 | 734 | 939 | 1042 | 1213 | 1234 | 355 | 1295 | 1454 | 2518 | 2518 |
| 244 | Last | 3rd | H2 | 18 | 363 | 363 | 702 | 964 | 1071 | 1054 | 333 | 1155 | 1269 | 2012 | 2012 |
| 244 | Last | 3rd | H3 | 17 | 438 | 438 | 446 | 519 | 567 | 583 | 114 | 620 | 665 | 948 | 948 |

Table B.2. Distribution Statistics for Peak Positive Sound Pressure Level During the 95th Percentile Pulse Duration of Each Strike in a Series on the Indicated Pile

|  | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pile ID |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 121N | 1st | 3rd |  | H1 | 98 | 3819 | 5412 | 6144 | 6646 | 7998 | 8608 | 2254 | 11083 | 11582 | 11701 | 11763 |
| 121N | 1st | 3rd | H2 | 98 | 4236 | 4521 | 4680 | 4997 | 5525 | 6067 | 1466 | 6762 | 8072 | 8874 | 12547 |
| 121N | 1st | 3rd | H3 | 97 | 2275 | 2450 | 2616 | 2962 | 3253 | 3232 | 438 | 3475 | 3735 | 3833 | 5167 |
| 121N | 2nd | 3rd | H1 | 99 | 5184 | 5405 | 5556 | 5688 | 5867 | 6531 | 1169 | 7649 | 8550 | 8689 | 9353 |
| 121N | 2nd | 3rd | H2 | 99 | 2184 | 2358 | 2424 | 2628 | 3137 | 3721 | 1280 | 5006 | 5634 | 5966 | 6813 |
| 121N | 2nd | 3rd | H3 | 98 | 936 | 1005 | 1053 | 1130 | 1235 | 1524 | 513 | 1845 | 2365 | 2596 | 2900 |
| 121N | Last | 3rd | H1 | 99 | 2192 | 4770 | 5778 | 7486 | 8248 | 8070 | 1683 | 8687 | 10277 | 10633 | 10923 |
| 121N | Last | 3rd | H2 | 99 | 1296 | 2331 | 2899 | 5117 | 5276 | 5282 | 1353 | 5662 | 7152 | 7767 | 8383 |
| 121N | Last | 3rd | H3 | 99 | 561 | 1093 | 1297 | 4607 | 4843 | 4323 | 1344 | 5043 | 5242 | 5377 | 5869 |
| 52N | 1st | 3rd | H1 | 35 | 4836 | 6417 | 6806 | 7056 | 7673 | 8044 | 1284 | 9284 | 9706 | 10353 | 10531 |
| 52N | 1st | 3rd | H2 | 35 | 5071 | 7379 | 7747 | 8264 | 8727 | 9379 | 2005 | 10276 | 12863 | 13790 | 14782 |
| 52N | 1st | 3rd | H3 | 35 | 2596 | 3332 | 4132 | 5064 | 6331 | 5812 | 1209 | 6573 | 6761 | 7204 | 7923 |
| 52N | 2nd | 3rd | H1 | 36 | 6802 | 7295 | 7396 | 7812 | 8306 | 8284 | 681 | 8610 | 8904 | 10066 | 10247 |
| 52N | 2nd | 3rd | H2 | 36 | 7541 | 7858 | 8005 | 8485 | 8652 | 9208 | 1469 | 9530 | 11720 | 13339 | 13749 |
| 52N | 2nd | 3rd | H3 | 36 | 3501 | 3573 | 3863 | 4154 | 4868 | 4868 | 799 | 5362 | 6107 | 6323 | 6512 |
| 52N | Last | 3rd | H1 | 36 | 1935 | 2638 | 3798 | 7677 | 7999 | 7402 | 1840 | 8347 | 8858 | 9001 | 9043 |
| 52N | Last | 3rd | H2 | 36 | 3391 | 3988 | 5984 | 9328 | 10160 | 9615 | 2146 | 11012 | 11628 | 12078 | 12109 |
| 52N | Last | 3rd | H3 | 36 | 714 | 742 | 1347 | 3522 | 3658 | 3315 | 988 | 3819 | 3995 | 4113 | 4144 |
| 118N | 1st | 3rd | H1 | 67 | 4605 | 5381 | 6201 | 8277 | 9357 | 9093 | 1812 | 10289 | 11241 | 11767 | 12508 |
| 118N | 1st | 3rd | H2 | 67 | 2399 | 3021 | 3276 | 3858 | 4335 | 4418 | 834 | 5035 | 5382 | 5647 | 6414 |
| 118N | 1st | 3rd | H3 | 66 | 930 | 1454 | 1585 | 1862 | 2073 | 2014 | 307 | 2214 | 2325 | 2402 | 2631 |
| 118N | 2nd | 3rd | H1 | 68 | 7014 | 7311 | 7425 | 7728 | 8131 | 8296 | 782 | 8823 | 9568 | 9714 | 10296 |
| 118N | 2nd | 3rd | H2 | 67 | 4233 | 4328 | 4520 | 4817 | 5208 | 5246 | 522 | 5649 | 5958 | 6101 | 6229 |
| 118N | 2nd | 3rd | H3 | 67 | 1932 | 2150 | 2162 | 2326 | 2412 | 2398 | 154 | 2479 | 2569 | 2597 | 2888 |
| 118N | Last | 3rd | H1 | 68 | 606 | 5098 | 8014 | 8326 | 8508 | 8227 | 1440 | 8762 | 8978 | 9041 | 9540 |
| 118N | Last | 3rd | H2 | 68 | 1940 | 5127 | 5310 | 5530 | 5787 | 5893 | 969 | 6354 | 7121 | 7299 | 7722 |
| 118N | Last | 3rd | H3 | 67 | 1243 | 2283 | 2349 | 2458 | 2616 | 2580 | 249 | 2739 | 2837 | 2881 | 2986 |

Table B.2. (continued)

| Pile ID |  |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \\ \hline \end{gathered}$ | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $50^{\text {th }}$ (Median) | Average | st dev | $75^{\text {th }}$ | 90 ${ }^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ |  | H1 | 77 | 3342 | 5096 | 5421 | 5716 | 6313 | 6300 | 784 | 6825 | 7145 | 7535 | 8011 |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 77 | 3704 | 4880 | 5709 | 6114 | 6538 | 6426 | 670 | 6855 | 7103 | 7360 | 7532 |
| 255 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 77 | 463 | 1733 | 1945 | 2155 | 2407 | 2890 | 2343 | 2721 | 2924 | 9743 | 13854 |
| 255 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 78 | 5838 | 5953 | 5987 | 6062 | 6212 | 6190 | 153 | 6306 | 6348 | 6453 | 6592 |
| 255 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 78 | 4733 | 4798 | 4853 | 4942 | 5032 | 5082 | 286 | 5129 | 5241 | 5588 | 6439 |
| 255 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 78 | 1349 | 1473 | 1528 | 1619 | 1747 | 2209 | 2115 | 1905 | 2474 | 2689 | 14039 |
| 255 | Last | $3^{\text {rd }}$ | H1 | 79 | 1869 | 5386 | 5565 | 5843 | 6024 | 5920 | 522 | 6136 | 6283 | 6322 | 6388 |
| 255 | Last | $3^{\text {rd }}$ | H2 | 79 | 1594 | 3900 | 4004 | 4186 | 4369 | 4380 | 433 | 4643 | 4822 | 4883 | 5177 |
| 255 | Last | $3^{\text {rd }}$ | H3 | 79 | 1443 | 1476 | 1728 | 2150 | 2291 | 2268 | 352 | 2470 | 2764 | 2899 | 2995 |
| 249 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H1 | 168 | 2247 | 3498 | 4316 | 5875 | 8226 | 7639 | 2199 | 9097 | 10309 | 10857 | 11546 |
| 249 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 168 | 1645 | 2985 | 3731 | 5305 | 5780 | 5522 | 1109 | 6126 | 6577 | 6744 | 7627 |
| 249 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 168 | 316 | 831 | 1050 | 1447 | 1603 | 1585 | 373 | 1836 | 2038 | 2116 | 2346 |
| 249 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 168 | 1569 | 6484 | 6700 | 7051 | 7893 | 8380 | 2198 | 8695 | 10556 | 14501 | 15214 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 168 | 1441 | 5602 | 5678 | 5826 | 5964 | 6362 | 1522 | 6180 | 6763 | 10536 | 14297 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 168 | 1388 | 1601 | 1826 | 1921 | 2088 | 2142 | 345 | 2323 | 2510 | 2871 | 3421 |
| 249 | Last | $3^{\text {rd }}$ | H1 | 170 | 2825 | 5613 | 5700 | 6063 | 6497 | 6428 | 570 | 6779 | 7088 | 7224 | 7668 |
| 249 | Last | $3^{\text {rd }}$ | H2 | 170 | 2383 | 5491 | 5706 | 5851 | 6024 | 5977 | 359 | 6137 | 6287 | 6333 | 6465 |
| 249 | Last | $3^{\text {rd }}$ | H3 | 169 | 1069 | 1883 | 1947 | 2109 | 2269 | 2293 | 285 | 2490 | 2680 | 2805 | 3024 |
| 252 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 85 | 1145 | 2608 | 2858 | 4034 | 5254 | 4989 | 1346 | 5993 | 6612 | 6731 | 7036 |
| 252 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 85 | 1629 | 2106 | 2297 | 3981 | 5325 | 5021 | 1526 | 6253 | 6686 | 6891 | 7415 |
| 252 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 84 | 521 | 775 | 874 | 1313 | 1565 | 1484 | 370 | 1725 | 1854 | 2002 | 2162 |
| 252 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 85 | 5593 | 5911 | 5974 | 6621 | 6966 | 7144 | 929 | 7309 | 8742 | 8923 | 9115 |
| 252 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 85 | 3746 | 4148 | 4226 | 4368 | 4502 | 4541 | 289 | 4698 | 4896 | 5095 | 5583 |
| 252 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 84 | 1418 | 1423 | 1479 | 1579 | 1746 | 1825 | 337 | 1906 | 2291 | 2381 | 2863 |
| 252 | Last | $3^{\text {rd }}$ | H1 | 86 | 5838 | 8714 | 8858 | 9095 | 9483 | 9493 | 680 | 9850 | 10355 | 10558 | 10900 |
| 252 | Last | $3^{\text {rd }}$ | H2 | 86 | 1705 | 4342 | 4394 | 4628 | 5108 | 5132 | 736 | 5509 | 6053 | 6452 | 6779 |
| 252 | Last | $3^{\text {rd }}$ | H3 | 85 | 1264 | 1545 | 1865 | 2220 | 2428 | 2462 | 457 | 2829 | 3038 | 3057 | 3495 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H1 | 64 | 650 | 1221 | 2861 | 4073 | 6565 | 5985 | 2509 | 7913 | 8938 | 9137 | 10630 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 64 | 952 | 1701 | 3299 | 4511 | 6904 | 6535 | 2495 | 8815 | 9456 | 9836 | 10209 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 62 | 688 | 975 | 1051 | 1314 | 2727 | 2322 | 898 | 3069 | 3297 | 3385 | 3622 |

Table B.2. (continued)

| $\begin{gathered} \text { Pile } \\ \text { ID } \\ \hline \end{gathered}$ |  |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ |  | H1 | 65 | 8224 | 8782 | 9391 | 11694 | 12058 | 11879 | 1309 | 12573 | 13314 | 13607 | 14258 |
| 172 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 65 | 8797 | 9451 | 9731 | 12001 | 14552 | 13326 | 2034 | 14782 | 14955 | 15030 | 15135 |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 63 | 2802 | 3006 | 3048 | 3155 | 3360 | 3351 | 239 | 3536 | 3683 | 3708 | 3775 |
| 172 | Last | 3rd | H1 | 65 | 8079 | 11588 | 11715 | 12220 | 13042 | 12839 | 965 | 13574 | 13812 | 13833 | 13970 |
| 172 | Last | 3rd | H2 | 65 | 7313 | 14250 | 14407 | 14539 | 14682 | 14545 | 932 | 14772 | 14874 | 15028 | 15045 |
| 172 | Last | 3rd | H3 | 63 | 1311 | 2725 | 2751 | 2830 | 3091 | 3044 | 320 | 3275 | 3341 | 3416 | 3588 |
| 171 | 1st | 3rd | H1 | 134 | 1191 | 2918 | 3162 | 5625 | 6626 | 6627 | 2186 | 8720 | 8965 | 9005 | 9047 |
| 171 | 1st | 3rd | H2 | 134 | 1037 | 2265 | 2883 | 5142 | 7438 | 6549 | 2359 | 8378 | 9108 | 9280 | 9464 |
| 171 | 1st | 3rd | H3 | 132 | 593 | 960 | 1087 | 1979 | 2420 | 2273 | 683 | 2768 | 3034 | 3166 | 3226 |
| 171 | 2nd | 3rd | H1 | 135 | 1616 | 8179 | 8292 | 8560 | 8820 | 8688 | 676 | 8943 | 9037 | 9105 | 9179 |
| 171 | 2nd | 3rd | H2 | 135 | 2070 | 9276 | 9332 | 9431 | 9558 | 9482 | 659 | 9666 | 9700 | 9721 | 9762 |
| 171 | 2nd | 3rd | H3 | 132 | 2336 | 2489 | 2558 | 2790 | 3339 | 3179 | 372 | 3439 | 3507 | 3535 | 3750 |
| 171 | Last | 3rd | H1 | 136 | 1411 | 9137 | 9790 | 10109 | 11084 | 10704 | 1561 | 11575 | 11926 | 12092 | 12435 |
| 171 | Last | 3rd | H2 | 136 | 1028 | 9663 | 10469 | 10922 | 11519 | 11448 | 1728 | 12503 | 12963 | 13086 | 13742 |
| 171 | Last | 3rd | H3 | 133 | 887 | 2563 | 2685 | 2893 | 3076 | 3001 | 374 | 3195 | 3337 | 3375 | 3703 |
| 238 | 1st | 3rd | H1 | 72 | 995 | 1242 | 1362 | 1972 | 2264 | 2544 | 1153 | 2649 | 4112 | 5306 | 6641 |
| 238 | 1st | 3rd | H2 | 71 | 639 | 868 | 1063 | 1840 | 2691 | 3379 | 1903 | 5312 | 6049 | 6305 | 6425 |
| 238 | 1st | 3rd | H3 | 67 | 442 | 855 | 1045 | 1546 | 2298 | 2103 | 731 | 2570 | 3029 | 3139 | 3480 |
| 238 | 2nd | 3rd | H1 | 73 | 3073 | 3257 | 3362 | 4240 | 5300 | 5150 | 1124 | 5987 | 6506 | 6758 | 7587 |
| 238 | 2nd | 3rd | H2 | 72 | 4294 | 4484 | 4575 | 4781 | 5470 | 6079 | 1411 | 7564 | 7966 | 8178 | 8333 |
| 238 | 2nd | 3rd | H3 | 68 | 3104 | 3198 | 3294 | 3394 | 3578 | 3598 | 233 | 3788 | 3893 | 3948 | 4116 |
| 238 | Last | 3rd | H1 | 73 | 6010 | 6416 | 6566 | 6929 | 7664 | 7774 | 946 | 8518 | 9042 | 9241 | 9712 |
| 238 | Last | 3rd | H2 | 73 | 4576 | 7010 | 7101 | 7278 | 7596 | 7675 | 640 | 8096 | 8491 | 8596 | 9395 |
| 238 | Last | 3rd | H3 | 69 | 2276 | 3286 | 3327 | 3456 | 3541 | 3563 | 256 | 3654 | 3867 | 4064 | 4279 |
| 235 | 1st | 3rd | H1 | 85 | 1996 | 2850 | 3498 | 4091 | 4539 | 4569 | 901 | 5293 | 5656 | 5782 | 6426 |
| 235 | 1st | 3rd | H2 | 85 | 2057 | 2691 | 3100 | 3437 | 3993 | 4025 | 893 | 4401 | 4875 | 5573 | 8077 |
| 235 | 1st | 3rd | H3 | 85 | 895 | 1388 | 1506 | 2304 | 3163 | 3011 | 1003 | 3795 | 4244 | 4540 | 4858 |
| 235 | 2nd | 3rd | H1 | 86 | 3932 | 4747 | 4843 | 5836 | 6761 | 6561 | 1105 | 7310 | 7847 | 8207 | 8562 |
| 235 | 2nd | 3rd | H2 | 86 | 4073 | 4624 | 4785 | 5311 | 5759 | 5679 | 599 | 6023 | 6421 | 6568 | 7164 |
| 235 | 2nd | 3rd | H3 | 86 | 4384 | 4574 | 4653 | 4724 | 4825 | 4827 | 155 | 4949 | 5022 | 5051 | 5146 |

Table B.2. (continued)

|  | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pile <br> ID |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 235 | Last | 3rd |  | H1 | 86 | 4451 | 4702 | 4821 | 5559 | 6925 | 6516 | 1172 | 7344 | 7917 | 8116 | 8681 |
| 235 | Last | 3rd | H2 | 86 | 4235 | 4373 | 4592 | 4833 | 5592 | 5779 | 1164 | 6289 | 7938 | 8217 | 8812 |
| 235 | Last | 3rd | H3 | 86 | 2727 | 4540 | 4635 | 4723 | 4880 | 4850 | 291 | 5000 | 5090 | 5165 | 5258 |
| 237 | 1st | 3rd | H1 | 122 | 1336 | 2578 | 3188 | 5839 | 7116 | 6434 | 1674 | 7512 | 7938 | 8094 | 9005 |
| 237 | 1st | 3rd | H2 | 122 | 756 | 2058 | 2492 | 3803 | 4328 | 4295 | 1125 | 5075 | 5648 | 5965 | 6363 |
| 237 | 1st | 3rd | H3 | 121 | 594 | 782 | 1453 | 1889 | 2609 | 2602 | 1009 | 3243 | 4028 | 4408 | 4680 |
| 237 | 2nd | 3rd | H1 | 123 | 4716 | 4932 | 5017 | 5167 | 5900 | 6154 | 1038 | 7051 | 7535 | 7808 | 8853 |
| 237 | 2nd | 3rd | H2 | 123 | 4739 | 5022 | 5210 | 5846 | 6297 | 6391 | 862 | 7169 | 7544 | 7684 | 7992 |
| 237 | 2nd | 3rd | H3 | 122 | 3627 | 3808 | 3835 | 3911 | 4060 | 4097 | 240 | 4198 | 4490 | 4580 | 4771 |
| 237 | Last | 3rd | H1 | 123 | 2031 | 6838 | 7060 | 7351 | 8460 | 8226 | 1094 | 9087 | 9431 | 9514 | 10087 |
| 237 | Last | 3rd | H2 | 123 | 1770 | 6715 | 6957 | 7232 | 8511 | 8120 | 1107 | 8955 | 9302 | 9491 | 9814 |
| 237 | Last | 3rd | H3 | 123 | 1898 | 3831 | 3881 | 3969 | 4113 | 4118 | 296 | 4262 | 4408 | 4509 | 4905 |
| 50N | 1st | 3rd | H1 | 111 | 1128 | 3930 | 6601 | 9923 | 11409 | 10498 | 2816 | 12333 | 12840 | 13157 | 14456 |
| 50N | 1st | 3rd | H2 | 111 | 1530 | 4116 | 5540 | 8020 | 10016 | 9445 | 2895 | 11650 | 12755 | 13240 | 14335 |
| 50N | 1st | 3rd | H3 | 111 | 598 | 5044 | 7099 | 9510 | 10840 | 10328 | 2516 | 11842 | 12823 | 13553 | 14216 |
| 50N | 2nd | 3rd | H1 | 111 | 10497 | 10802 | 11210 | 11492 | 12217 | 12218 | 821 | 12906 | 13276 | 13503 | 13905 |
| 50N | 2nd | 3rd | H2 | 111 | 10549 | 11409 | 11702 | 12275 | 12848 | 12785 | 773 | 13403 | 13628 | 13848 | 14186 |
| 50N | 2nd | 3rd | H3 | 112 | 9576 | 9971 | 10415 | 10860 | 11822 | 11828 | 1118 | 12589 | 13356 | 13798 | 14376 |
| 50N | Last | 3rd | H1 | 112 | 276 | 3119 | 10464 | 11054 | 11591 | 10964 | 2530 | 12112 | 12546 | 12752 | 13171 |
| 50N | Last | 3rd | H2 | 112 | 1071 | 3950 | 11236 | 12311 | 12925 | 12037 | 2650 | 13220 | 13388 | 13502 | 14329 |
| 50N | Last | 3rd | H3 | 112 | 970 | 3509 | 9029 | 9761 | 10361 | 9895 | 2172 | 10885 | 11464 | 11707 | 12506 |
| 120N | 1st | 3rd | H1 | 50 | 2457 | 5745 | 7099 | 8606 | 10046 | 9544 | 1965 | 10941 | 11305 | 11528 | 13457 |
| 120N | 1st | 3rd | H2 | 50 | 1862 | 4252 | 4706 | 5597 | 6380 | 6605 | 1655 | 7783 | 8887 | 9162 | 10361 |
| 120N | 1st | 3rd | H3 | 50 | 1016 | 2377 | 3477 | 3901 | 4845 | 4786 | 1249 | 5877 | 6409 | 6491 | 6684 |
| 120N | 2nd | 3rd | H1 | 51 | 10738 | 10771 | 10907 | 11609 | 12161 | 12480 | 1176 | 13356 | 14306 | 14491 | 15051 |
| 120N | 2nd | 3rd | H2 | 51 | 7208 | 7273 | 7473 | 7707 | 8128 | 8527 | 1181 | 9164 | 10373 | 10987 | 11888 |
| 120N | 2nd | 3rd | H3 | 50 | 4387 | 4510 | 4583 | 4869 | 5254 | 5275 | 522 | 5700 | 6016 | 6095 | 6623 |
| 120N | Last | 3rd | H1 | 51 | 1941 | 3699 | 10708 | 11406 | 14569 | 12709 | 3402 | 15304 | 15401 | 15447 | 15525 |
| 120N | Last | 3rd | H2 | 51 | 1149 | 2767 | 8657 | 9491 | 10719 | 9976 | 2631 | 11478 | 12119 | 12418 | 12446 |
| 120N | Last | 3rd | H3 | 51 | 1532 | 2481 | 4714 | 4994 | 5304 | 5132 | 888 | 5678 | 5777 | 5884 | 5925 |

Table B.2. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 240 | 1st | 3rd |  | H1 | 98 | 1314 | 2932 | 4082 | 6171 | 7506 | 7585 | 2531 | 9396 | 11096 | 11784 | 12628 |
| 240 | 1st | 3rd | H2 | 99 | 784 | 2262 | 3489 | 4772 | 6181 | 6525 | 2723 | 7809 | 10510 | 11691 | 14528 |
| 240 | 1st | 3rd | H3 | 98 | 611 | 1393 | 2159 | 2898 | 3530 | 3517 | 1156 | 4301 | 4992 | 5583 | 6296 |
| 240 | 2nd | 3rd | H1 | 99 | 6009 | 6196 | 6453 | 7192 | 9115 | 9450 | 2459 | 11101 | 13440 | 13810 | 15147 |
| 240 | 2nd | 3rd | H2 | 99 | 5728 | 5984 | 6235 | 6570 | 8703 | 8487 | 1862 | 10267 | 10970 | 11473 | 12276 |
| 240 | 2nd | 3rd | H3 | 99 | 4748 | 5149 | 5269 | 5465 | 5898 | 5829 | 428 | 6137 | 6351 | 6537 | 6727 |
| 240 | Last | 3rd | H1 | 100 | 6160 | 6326 | 6541 | 7028 | 8407 | 8472 | 1579 | 9747 | 10608 | 10978 | 13170 |
| 240 | Last | 3rd | H2 | 100 | 177 | 5932 | 6051 | 6226 | 6478 | 6460 | 776 | 6774 | 6983 | 7287 | 8050 |
| 240 | Last | 3rd | H3 | 99 | 3029 | 6090 | 6150 | 6348 | 6559 | 6554 | 480 | 6845 | 7032 | 7103 | 7216 |
| 182 | 1st | 3rd | H1 | 15 | 1038 | 1038 | 1300 | 2104 | 2759 | 3511 | 1958 | 4185 | 6927 | 7227 | 7227 |
| 182 | 1st | 3rd | H2 | 15 | 869 | 869 | 1014 | 1880 | 2289 | 2667 | 1319 | 3608 | 4654 | 5504 | 5504 |
| 182 | 1st | 3rd | H3 | 15 | 503 | 503 | 628 | 1126 | 1629 | 1735 | 767 | 2352 | 2815 | 2910 | 2910 |
| 182 | 2nd | 3rd | H1 | 15 | 5532 | 5532 | 5717 | 7271 | 7671 | 7617 | 1073 | 8287 | 9187 | 9349 | 9349 |
| 182 | 2nd | 3rd | H2 | 15 | 3479 | 3479 | 3889 | 4972 | 5448 | 5149 | 764 | 5523 | 5647 | 6224 | 6224 |
| 182 | 2nd | 3rd | H3 | 15 | 2040 | 2040 | 2146 | 2383 | 2507 | 2634 | 397 | 2888 | 3165 | 3455 | 3455 |
| 182 | Last | 3rd | H1 | 16 | 6903 | 6903 | 6959 | 7246 | 7484 | 7490 | 387 | 7756 | 7941 | 8402 | 8402 |
| 182 | Last | 3rd | H2 | 16 | 5148 | 5148 | 5303 | 5612 | 5821 | 5812 | 347 | 6020 | 6341 | 6405 | 6405 |
| 182 | Last | 3rd | H3 | 16 | 2385 | 2385 | 2395 | 2466 | 2632 | 2616 | 162 | 2737 | 2829 | 2896 | 2896 |
| 177 | 1st | 3rd | H1 | 9 | 396 | 396 | 396 | 976 | 2070 | 1699 | 800 | 2192 | 2595 | 2595 | 2595 |
| 177 | 1st | 3rd | H2 | 8 | 638 | 638 | 638 | 1865 | 2043 | 2712 | 2030 | 2939 | 7361 | 7361 | 7361 |
| 177 | 1st | 3rd | H3 | 6 | 976 | 976 | 976 | 1102 | 1225 | 1274 | 258 | 1431 | 1683 | 1683 | 1683 |
| 177 | 2nd | 3rd | H1 | 9 | 1105 | 1105 | 1105 | 1908 | 2123 | 2442 | 1030 | 2920 | 4204 | 4204 | 4204 |
| 177 | 2nd | 3rd | H2 | 9 | 1058 | 1058 | 1058 | 1406 | 1440 | 1969 | 1211 | 1748 | 4795 | 4795 | 4795 |
| 177 | 2nd | 3rd | H3 | 7 | 500 | 500 | 500 | 765 | 1007 | 1221 | 600 | 1965 | 2045 | 2045 | 2045 |
| 177 | Last | 3rd | H1 | 10 | 1901 | 1901 | 1950 | 2012 | 3177 | 2948 | 714 | 3430 | 3686 | 3906 | 3906 |
| 177 | Last | 3rd | H2 | 9 | 1377 | 1377 | 1377 | 1636 | 1718 | 1801 | 303 | 1998 | 2333 | 2333 | 2333 |
| 177 | Last | 3rd | H3 | 8 | 826 | 826 | 826 | 858 | 997 | 960 | 99 | 1039 | 1071 | 1071 | 1071 |
| 174 | 1st | 3rd | H1 | 17 | 513 | 513 | 773 | 2354 | 2966 | 3063 | 1443 | 3660 | 5615 | 6005 | 6005 |
| 174 | 1st | 3rd | H2 | 17 | 1053 | 1053 | 2209 | 2778 | 3149 | 3485 | 1245 | 4367 | 5457 | 5566 | 5566 |
| 174 | 1st | 3rd | H3 | 16 | 808 | 808 | 951 | 1123 | 1364 | 1436 | 430 | 1632 | 2110 | 2299 | 2299 |

Table B.2. (continued)

| $\begin{aligned} & \text { Pile } \\ & \text { ID } \end{aligned}$ | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 174 | 2nd | 3rd |  | H1 | 18 | 847 | 847 | 1152 | 1368 | 1655 | 1688 | 481 | 1929 | 2409 | 2816 | 2816 |
| 174 | 2nd | 3rd | H2 | 18 | 1466 | 1466 | 1913 | 2236 | 2675 | 2578 | 477 | 2874 | 3048 | 3527 | 3527 |
| 174 | 2nd | 3rd | H3 | 17 | 553 | 553 | 576 | 853 | 1071 | 1027 | 278 | 1221 | 1431 | 1456 | 1456 |
| 174 | Last | 3rd | H1 | 19 | 1939 | 1939 | 2193 | 2598 | 2873 | 2999 | 619 | 3584 | 3931 | 4034 | 4034 |
| 174 | Last | 3rd | H2 | 18 | 1006 | 1006 | 3465 | 3830 | 4090 | 3989 | 905 | 4227 | 4921 | 5730 | 5730 |
| 174 | Last | 3rd | H3 | 17 | 1175 | 1175 | 1237 | 1395 | 1470 | 1464 | 182 | 1523 | 1657 | 1904 | 1904 |
| 181 | 1st | 3rd | H1 | 16 | 595 | 595 | 716 | 2018 | 2535 | 2800 | 1427 | 3768 | 4955 | 5322 | 5322 |
| 181 | 1st | 3rd | H2 | 15 | 899 | 899 | 1178 | 1618 | 2724 | 2491 | 977 | 3277 | 3771 | 4199 | 4199 |
| 181 | 1st | 3rd | H3 | 14 | 570 | 570 | 578 | 908 | 1322 | 1203 | 384 | 1473 | 1650 | 1683 | 1683 |
| 181 | 2nd | 3rd | H1 | 16 | 1235 | 1235 | 1897 | 2204 | 2966 | 2750 | 664 | 3164 | 3340 | 3771 | 3771 |
| 181 | 2nd | 3rd | H2 | 16 | 1450 | 1450 | 1526 | 1774 | 2272 | 2166 | 407 | 2566 | 2582 | 2649 | 2649 |
| 181 | 2nd | 3rd | H3 | 15 | 651 | 651 | 744 | 951 | 1055 | 1068 | 217 | 1244 | 1359 | 1371 | 1371 |
| 181 | Last | 3rd | H1 | 17 | 2006 | 2006 | 3110 | 3604 | 4472 | 4201 | 852 | 4773 | 4948 | 5323 | 5323 |
| 181 | Last | 3rd | H2 | 16 | 1305 | 1305 | 2441 | 2817 | 3125 | 2970 | 525 | 3213 | 3350 | 3677 | 3677 |
| 181 | Last | 3rd | H3 | 16 | 1433 | 1433 | 1462 | 1708 | 1875 | 1857 | 247 | 2048 | 2175 | 2226 | 2226 |
| 167 | 1st | 3rd | H1 | 33 | 946 | 1824 | 2089 | 2519 | 4125 | 5367 | 3051 | 7951 | 10045 | 10357 | 10375 |
| 167 | 1st | 3rd | H2 | 32 | 751 | 1105 | 1120 | 1515 | 2209 | 2577 | 1475 | 3192 | 5111 | 5721 | 6803 |
| 167 | 1st | 3rd | H3 | 21 | 559 | 615 | 727 | 787 | 1248 | 1343 | 659 | 1705 | 2417 | 2473 | 2723 |
| 167 | 2nd | 3rd | H1 | 34 | 3361 | 3665 | 3822 | 3987 | 4390 | 4723 | 1155 | 5316 | 5653 | 6429 | 9603 |
| 167 | 2nd | 3rd | H2 | 33 | 1273 | 1343 | 1408 | 1634 | 1791 | 1820 | 354 | 2023 | 2156 | 2384 | 3082 |
| 167 | 2nd | 3rd | H3 | 22 | 628 | 695 | 710 | 746 | 822 | 818 | 89 | 894 | 923 | 925 | 957 |
| 167 | Last | 3rd | H1 | 35 | 3485 | 3601 | 3667 | 3879 | 4251 | 4184 | 378 | 4471 | 4597 | 4778 | 5031 |
| 167 | Last | 3rd | H2 | 34 | 1483 | 1549 | 1589 | 1703 | 1968 | 1955 | 286 | 2164 | 2364 | 2436 | 2437 |
| 167 | Last | 3rd | H3 | 23 | 886 | 952 | 1035 | 1058 | 1078 | 1088 | 74 | 1148 | 1161 | 1195 | 1216 |
| 178 | 1st | 3rd | H1 | 17 | 330 | 330 | 632 | 2281 | 3016 | 3717 | 2408 | 5799 | 6705 | 8252 | 8252 |
| 178 | 1st | 3rd | H2 | 17 | 483 | 483 | 1232 | 2375 | 3440 | 4129 | 2295 | 5748 | 7905 | 8005 | 8005 |
| 178 | 1st | 3rd | H3 | 16 | 464 | 464 | 811 | 1414 | 1731 | 1778 | 681 | 2193 | 2626 | 3268 | 3268 |
| 178 | 2nd | 3rd | H1 | 18 | 3184 | 3184 | 3308 | 5442 | 6047 | 5716 | 1203 | 6463 | 6835 | 7419 | 7419 |
| 178 | 2nd | 3rd | H2 | 17 | 4056 | 4056 | 5084 | 6537 | 8086 | 7396 | 1531 | 8421 | 8779 | 9596 | 9596 |
| 178 | 2nd | 3rd | H3 | 17 | 2028 | 2028 | 2140 | 2286 | 2300 | 2329 | 173 | 2350 | 2568 | 2765 | 2765 |

Table B.2. (continued)

| $\begin{gathered} \text { Pile } \\ \text { ID } \\ \hline \end{gathered}$ |  |  | Hydrophone | Number of Impacts | Peak Positive Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th <br> (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 178 | Last | 3rd |  | H1 | 18 | 6590 | 6590 | 6743 | 6835 | 7033 | 7256 | 596 | 7327 | 8488 | 8491 | 8491 |
| 178 | Last | 3rd | H2 | 18 | 7176 | 7176 | 7531 | 7669 | 8186 | 8303 | 731 | 8827 | 9399 | 9625 | 9625 |
| 178 | Last | 3rd | H3 | 17 | 1995 | 1995 | 1997 | 2235 | 2458 | 2372 | 234 | 2532 | 2618 | 2798 | 2798 |
| 244 | 1st | 3rd | H1 | 17 | 185 | 185 | 369 | 2457 | 4494 | 4127 | 2349 | 5827 | 6512 | 7215 | 7215 |
| 244 | 1st | 3rd | H2 | 16 | 592 | 592 | 2241 | 2574 | 3055 | 3336 | 1448 | 3800 | 5768 | 6892 | 6892 |
| 244 | 1st | 3rd | H3 | 16 | 1042 | 1042 | 1323 | 1834 | 2207 | 2394 | 1009 | 2706 | 3318 | 5480 | 5480 |
| 244 | 2nd | 3rd | H1 | 18 | 1005 | 1005 | 1986 | 3115 | 3618 | 4167 | 2462 | 4085 | 10047 | 10809 | 10809 |
| 244 | 2nd | 3rd | H2 | 17 | 1005 | 1005 | 2122 | 3218 | 3628 | 3600 | 1216 | 3870 | 4647 | 6906 | 6906 |
| 244 | 2nd | 3rd | H3 | 16 | 973 | 973 | 1572 | 1810 | 2001 | 2186 | 1028 | 2135 | 2606 | 5788 | 5788 |
| 244 | Last | 3rd | H1 | 19 | 2732 | 2732 | 2824 | 3106 | 3658 | 3938 | 1640 | 4113 | 4344 | 10389 | 10389 |
| 244 | Last | 3rd | H2 | 18 | 3322 | 3322 | 3466 | 3928 | 4354 | 4439 | 848 | 4793 | 4931 | 7221 | 7221 |
| 244 | Last | 3rd | H3 | 17 | 1802 | 1802 | 1803 | 2013 | 2212 | 2298 | 566 | 2380 | 2500 | 4333 | 4333 |

Table B.3. Distribution Statistics for Peak Negative Sound Pressure Level During the 95th Percentile Pulse Duration of Each Strike in a Series on the Indicated Pile

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 121 N | 1st | 3rd |  | H1 | 98 | -15174 | -14411 | -14156 | -13049 | -10844 | -10602 | 2811 | -8600 | -7562 | -5548 | -3463 |
| 121 N | 1st | 3rd | H2 | 98 | -12761 | -8913 | -8579 | -7367 | -6839 | -7147 | 1091 | -6493 | -6279 | -6139 | -5573 |
| 121 N | 1st | 3rd | H3 | 97 | -5602 | -4760 | -4494 | -3946 | -3528 | -3619 | 614 | -3246 | -2991 | -2741 | -2118 |
| 121 N | 2nd | 3rd | H1 | 99 | -10260 | -9689 | -9362 | -8112 | -5626 | -6494 | 1755 | -5029 | -4837 | -4762 | -4619 |
| 121 N | 2nd | 3rd | H2 | 99 | -6676 | -5978 | -5528 | -4631 | -3590 | -3958 | 991 | -3151 | -2997 | -2945 | -2837 |
| 121 N | 2nd | 3rd | H3 | 98 | -3522 | -3322 | -3043 | -2491 | -1694 | -1994 | 636 | -1466 | -1403 | -1379 | -1358 |
| 121 N | Last | 3rd | H1 | 99 | -17692 | -16184 | -15614 | -14338 | -12853 | -11859 | 3615 | -10567 | -5521 | -4233 | -1146 |
| 121 N | Last | 3rd | H2 | 99 | -11744 | -11484 | -11438 | -11062 | -10519 | -9305 | 2892 | -9318 | -3334 | -2692 | -461 |
| 121 N | Last | 3rd | H3 | 99 | -4311 | -3898 | -3787 | -3720 | -3639 | -3307 | 831 | -3502 | -1435 | -1397 | -363 |
| 52 N | 1st | 3rd | H1 | 35 | -11553 | -11049 | -9937 | -9706 | -9525 | -9452 | 886 | -9175 | -9042 | -8569 | -5476 |
| 52 N | 1st | 3rd | H2 | 35 | -14565 | -14087 | -13556 | -12877 | -10684 | -11022 | 1788 | -9911 | -8796 | -8294 | -7408 |
| 52N | 1st | 3rd | H3 | 35 | -6643 | -6598 | -6564 | -6248 | -5903 | -5834 | 681 | -5597 | -5245 | -5202 | -2727 |
| 52 N | 2nd | 3rd | H1 | 36 | -9991 | -9658 | -9599 | -8958 | -8620 | -8701 | 497 | -8346 | -8163 | -7834 | -7809 |
| 52 N | 2nd | 3rd | H2 | 36 | -13142 | -12855 | -12497 | -11414 | -10904 | -10807 | 1101 | -9938 | -9211 | -9142 | -8937 |
| 52 N | 2nd | 3rd | H3 | 36 | -7805 | -7755 | -7662 | -7437 | -7213 | -7216 | 329 | -7049 | -6879 | -6367 | -6325 |
| 52 N | Last | 3rd | H1 | 36 | -9503 | -9398 | -9148 | -8947 | -8765 | -7850 | 2151 | -8298 | -3405 | -2249 | -1800 |
| 52 N | Last | 3rd | H2 | 36 | -13207 | -12964 | -12712 | -12362 | -12088 | -11072 | 2526 | -11238 | -6703 | -3976 | -3277 |
| 52 N | Last | 3rd | H3 | 36 | -8765 | -8603 | -8397 | -8257 | -8046 | -7193 | 2134 | -7795 | -2772 | -1552 | -1275 |
| 118N | 1st | 3 rd | H1 | 67 | -10979 | -10653 | -10557 | -10308 | -9673 | -9520 | 1081 | -9168 | -8613 | -7522 | -4933 |
| 118N | 1st | 3rd | H2 | 67 | -6620 | -6046 | -5529 | -4864 | -4070 | -4161 | 1041 | -3452 | -2710 | -2575 | -1945 |
| 118N | 1st | 3rd | H3 | 66 | -2276 | -2179 | -2108 | -1981 | -1793 | -1781 | 281 | -1648 | -1354 | -1280 | -917 |
| 118N | 2nd | 3rd | H1 | 68 | -10120 | -9687 | -9523 | -9343 | -8898 | -8923 | 537 | -8611 | -8269 | -7821 | -7586 |
| 118N | 2nd | 3rd | H2 | 67 | -5552 | -4846 | -4698 | -4532 | -4281 | -4247 | 432 | -4059 | -3623 | -3585 | -3198 |
| 118N | 2nd | 3rd | H3 | 67 | -2443 | -2385 | -2342 | -2287 | -2168 | -2189 | 116 | -2092 | -2034 | -2027 | -1999 |
| 118N | Last | 3rd | H1 | 68 | -10935 | -10641 | -10107 | -9739 | -9279 | -9011 | 1629 | -8928 | -8220 | -5893 | -310 |
| 118N | Last | 3rd | H2 | 68 | -6555 | -6376 | -6119 | -5787 | -5554 | -5414 | 831 | -5214 | -4739 | -4628 | -1629 |
| 118N | Last | 3 rd | H3 | 67 | -2728 | -2583 | -2492 | -2351 | -2280 | -2281 | 179 | -2194 | -2109 | -2060 | -1416 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{array}{\|l} \text { Number } \\ \text { of } \\ \text { Impacts } \end{array}$ | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 255 | 1st | 3rd |  | H1 | 77 | -11589 | -11037 | -10787 | -10342 | -9171 | -9337 | 1110 | -8642 | -8070 | -7860 | -5669 |
| 255 | 1st | 3rd | H2 | 77 | -9050 | -8639 | -8443 | -7979 | -7551 | -7473 | 879 | -7229 | -6173 | -5273 | -4735 |
| 255 | 1st | 3rd | H3 | 77 | -8460 | -2738 | -2452 | -2376 | -2233 | -2377 | 966 | -2097 | -1941 | -1699 | -1172 |
| 255 | 2nd | 3rd | H1 | 78 | -9441 | -9211 | -8954 | -8636 | -8178 | -8135 | 680 | -7768 | -7102 | -6770 | -6340 |
| 255 | 2nd | 3rd | H2 | 78 | -8105 | -7859 | -7780 | -7587 | -7241 | -6980 | 828 | -6454 | -5490 | -4939 | -4547 |
| 255 | 2nd | 3rd | H3 | 78 | -11331 | -5892 | -2131 | -1813 | -1601 | -1937 | 1595 | -1411 | -1173 | -1089 | -1018 |
| 255 | Last | 3rd | H1 | 79 | -8340 | -8014 | -7874 | -7544 | -6791 | -6803 | 920 | -6164 | -5814 | -5547 | -2275 |
| 255 | Last | 3rd | H2 | 79 | -6693 | -6465 | -6355 | -6158 | -5418 | -5454 | 800 | -4779 | -4557 | -4414 | -1943 |
| 255 | Last | 3rd | H3 | 79 | -2079 | -2026 | -1796 | -1571 | -1438 | -1467 | 242 | -1296 | -1194 | -1122 | -1039 |
| 249 | 1st | 3 rd | H1 | 168 | -10456 | -10218 | -10099 | -9678 | -9075 | -8650 | 1691 | -8277 | -5750 | -4291 | -2410 |
| 249 | 1st | 3rd | H2 | 168 | -7602 | -6937 | -6518 | -6089 | -5513 | -5520 | 904 | -4992 | -4707 | -4564 | -1814 |
| 249 | 1st | 3 rd | H3 | 168 | -2176 | -2106 | -2083 | -2008 | -1907 | -1803 | 340 | -1744 | -1234 | -1011 | -471 |
| 249 | 2nd | 3rd | H1 | 168 | -18118 | -15809 | -8984 | -8027 | -7223 | -7980 | 2512 | -6840 | -6582 | -6473 | -1877 |
| 249 | 2nd | 3rd | H2 | 168 | -11556 | -9569 | -6911 | -5893 | -4778 | -5457 | 1600 | -4510 | -4403 | -4372 | -1380 |
| 249 | 2nd | 3rd | H3 | 168 | -4372 | -3335 | -2795 | -2469 | -2300 | -2407 | 424 | -2185 | -2096 | -2047 | -1634 |
| 249 | Last | 3rd | H1 | 170 | -7138 | -6890 | -6768 | -6620 | -6363 | -6371 | 389 | -6167 | -5976 | -5913 | -3094 |
| 249 | Last | 3rd | H2 | 170 | -5925 | -5652 | -5400 | -5158 | -4884 | -4924 | 392 | -4684 | -4557 | -4458 | -2379 |
| 249 | Last | 3rd | H3 | 169 | -2857 | -2541 | -2465 | -2336 | -2208 | -2203 | 226 | -2044 | -1931 | -1896 | -993 |
| 252 | 1st | 3rd | H1 | 85 | -8506 | -8197 | -7935 | -7644 | -7138 | -6586 | 1506 | -5936 | -3951 | -3778 | -1456 |
| 252 | 1st | 3 rd | H2 | 85 | -8506 | -8197 | -7935 | -7644 | -7138 | -6586 | 1506 | -5936 | -3951 | -3778 | -1456 |
| 252 | 1st | 3rd | H3 | 85 | -6679 | -5653 | -5565 | -5138 | -4434 | -4341 | 1096 | -3855 | -2590 | -2202 | -1189 |
| 252 | 1st | 3rd | H1 | 84 | -1918 | -1761 | -1702 | -1606 | -1380 | -1299 | 370 | -968 | -768 | -665 | -439 |
| 252 | 2nd | 3rd | H2 | 85 | -13999 | -13930 | -13641 | -13122 | -11491 | -11321 | 1837 | -9780 | -8753 | -8572 | -8125 |
| 252 | 2nd | 3rd | H3 | 85 | -13999 | -13930 | -13641 | -13122 | -11491 | -11321 | 1837 | -9780 | -8753 | -8572 | -8125 |
| 252 | 2nd | 3rd | H1 | 85 | -9226 | -8701 | -7857 | -6240 | -5666 | -5651 | 1472 | -4445 | -3848 | -3631 | -3388 |
| 252 | 2nd | 3rd | H2 | 84 | -2126 | -1941 | -1813 | -1269 | -1137 | -1224 | 295 | -1048 | -968 | -956 | -910 |
| 252 | Last | 3rd | H3 | 86 | -16306 | -15402 | -14940 | -14543 | -14006 | -13933 | 1135 | -13565 | -12932 | -12553 | -6341 |
| 252 | Last | 3rd | H1 | 86 | -16306 | -15402 | -14940 | -14543 | -14006 | -13933 | 1135 | -13565 | -12932 | -12553 | -6341 |
| 252 | Last | 3rd | H2 | 86 | -12003 | -11576 | -11442 | -10498 | -8919 | -9311 | 1363 | -8408 | -7826 | -7540 | -5133 |
| 252 | Last | 3rd | H3 | 85 | -2545 | -2323 | -2249 | -2109 | -1928 | -1925 | 251 | -1759 | -1591 | -1503 | -1335 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{array}{\|c\|} \hline \text { Number } \\ \text { of } \\ \text { Impacts } \end{array}$ | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 172 | 1st | 3rd |  | H1 | 64 | -14674 | -13896 | -13475 | -10079 | -6109 | -6897 | 4022 | -3551 | -2732 | -1134 | -389 |
| 172 | 1st | 3rd | H2 | 64 | -14398 | -11442 | -10076 | -8545 | -6469 | -6628 | 2849 | -4489 | -3299 | -1829 | -1303 |
| 172 | 1st | 3rd | H3 | 62 | -4420 | -4283 | -4074 | -3749 | -2764 | -2543 | 1247 | -1219 | -895 | -850 | -768 |
| 172 | 2nd | 3rd | H1 | 65 | -19866 | -19647 | -19568 | -18921 | -18176 | -17615 | 1696 | -16288 | -14878 | -14391 | -13912 |
| 172 | 2nd | 3rd | H2 | 65 | -23776 | -23089 | -22807 | -21280 | -19968 | -19593 | 2577 | -18463 | -15371 | -14325 | -13232 |
| 172 | 2nd | 3rd | H3 | 63 | -3577 | -3386 | -3381 | -3235 | -3054 | -3061 | 230 | -2896 | -2770 | -2663 | -2591 |
| 172 | Last | 3rd | H1 | 65 | -20559 | -20510 | -20487 | -20179 | -19769 | -19401 | 1210 | -18663 | -18318 | -17676 | -12787 |
| 172 | Last | 3rd | H2 | 65 | -24491 | -24352 | -24305 | -24068 | -22742 | -22630 | 1788 | -21410 | -20797 | -20382 | -13101 |
| 172 | Last | 3rd | H3 | 63 | -3339 | -3195 | -3130 | -3064 | -2924 | -2863 | 303 | -2682 | -2561 | -2537 | -1212 |
| 171 | 1st | 3rd | H1 | 134 | -11435 | -11063 | -10840 | -9659 | -7553 | -7283 | 2786 | -5690 | -3252 | -2306 | -1054 |
| 171 | 1st | 3rd | H2 | 134 | -8946 | -8800 | -8611 | -8358 | -7919 | -6556 | 2566 | -5593 | -1879 | -1502 | -1015 |
| 171 | 1st | 3rd | H3 | 132 | -3912 | -3811 | -3739 | -3442 | -2748 | -2482 | 1066 | -1688 | -811 | -682 | -576 |
| 171 | 2nd | 3rd | H1 | 135 | -12359 | -11960 | -11857 | -11656 | -11274 | -11144 | 914 | -10747 | -10402 | -10159 | -2740 |
| 171 | 2nd | 3rd | H2 | 135 | -8918 | -8693 | -8591 | -8422 | -8164 | -8155 | 550 | -7984 | -7855 | -7768 | -2662 |
| 171 | 2nd | 3rd | H3 | 132 | -4779 | -4612 | -4522 | -4375 | -4085 | -4114 | 293 | -3869 | -3764 | -3735 | -3534 |
| 171 | Last | 3rd | H1 | 136 | -13748 | -11644 | -11315 | -10930 | -10114 | -10003 | 1486 | -9300 | -8878 | -8602 | -1864 |
| 171 | Last | 3rd | H2 | 136 | -12105 | -9994 | -9663 | -9206 | -8740 | -8666 | 1162 | -8282 | -8030 | -7629 | -1448 |
| 171 | Last | 3rd | H3 | 133 | -4010 | -3685 | -3620 | -3519 | -3390 | -3299 | 382 | -3186 | -2940 | -2887 | -1152 |
| 238 | 1st | 3rd | H1 | 72 | -7316 | -5948 | -5347 | -3410 | -2585 | -2938 | 1340 | -2063 | -1903 | -1118 | -743 |
| 238 | 1st | 3rd | H2 | 71 | -6378 | -5835 | -5147 | -3632 | -2282 | -2738 | 1542 | -1556 | -1067 | -826 | -440 |
| 238 | 1st | 3rd | H3 | 67 | -4323 | -3881 | -3834 | -2951 | -2087 | -2171 | 1027 | -1380 | -843 | -803 | -659 |
| 238 | 2nd | 3 rd | H1 | 73 | -8751 | -8470 | -8213 | -7789 | -6587 | -6757 | 1103 | -6103 | -5282 | -4751 | -4279 |
| 238 | 2nd | 3rd | H2 | 72 | -8715 | -8557 | -8386 | -7845 | -6970 | -6830 | 1283 | -6179 | -4685 | -4218 | -4008 |
| 238 | 2nd | 3rd | H3 | 68 | -4016 | -3989 | -3946 | -3791 | -3186 | -3236 | 522 | -2901 | -2476 | -2324 | -2227 |
| 238 | Last | 3rd | H1 | 73 | -10125 | -9754 | -9521 | -9200 | -8920 | -8857 | 607 | -8541 | -8235 | -8017 | -5892 |
| 238 | Last | 3rd | H2 | 73 | -12138 | -11939 | -11462 | -10618 | -9146 | -9225 | 1528 | -7857 | -7440 | -7098 | -6822 |
| 238 | Last | 3rd | H3 | 69 | -4462 | -4157 | -4002 | -3536 | -3329 | -3375 | 384 | -3189 | -3032 | -2862 | -2090 |
| 235 | 1st | 3rd | H1 | 85 | -10611 | -7864 | -7489 | -6849 | -5924 | -5874 | 1383 | -4848 | -4173 | -3737 | -2816 |
| 235 | 1st | 3rd | H2 | 85 | -8412 | -7931 | -7122 | -6250 | -5286 | -5258 | 1387 | -4026 | -3715 | -3570 | -2169 |
| 235 | 1st | 3rd | H3 | 85 | -6022 | -4885 | -4402 | -3978 | -3688 | -3518 | 907 | -3371 | -2115 | -1765 | -891 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Negative Sound Pressure ( Pa ) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 235 | 2nd | 3rd |  | H1 | 86 | -10311 | -9913 | -9827 | -9503 | -8804 | -8189 | 1596 | -6818 | -5492 | -5338 | -4824 |
| 235 | 2nd | 3rd | H2 | 86 | -9608 | -9320 | -9160 | -8792 | -8240 | -7879 | 1152 | -6898 | -6311 | -5906 | -4898 |
| 235 | 2nd | 3rd | H3 | 86 | -4909 | -4677 | -4494 | -4060 | -3658 | -3797 | 444 | -3457 | -3300 | -3239 | -3171 |
| 235 | Last | 3rd | H1 | 86 | -15210 | -14872 | -14237 | -9208 | -7748 | -8802 | 2708 | -7219 | -6278 | -6059 | -5816 |
| 235 | Last | 3rd | H2 | 86 | -9610 | -9249 | -8392 | -7705 | -7015 | -6873 | 1228 | -5701 | -5194 | -5126 | -5000 |
| 235 | Last | 3rd | H3 | 86 | -4062 | -3951 | -3816 | -3550 | -3430 | -3457 | 250 | -3306 | -3219 | -3198 | -2351 |
| 237 | 1st | 3rd | H1 | 122 | -9687 | -8626 | -8465 | -7729 | -7109 | -6715 | 1721 | -6270 | -3378 | -2724 | -1371 |
| 237 | 1st | 3rd | H2 | 122 | -8752 | -7511 | -6580 | -5582 | -4956 | -4910 | 1451 | -4428 | -2753 | -2025 | -1181 |
| 237 | 1st | 3rd | H3 | 121 | -4223 | -3847 | -3660 | -3258 | -2953 | -2785 | 799 | -2438 | -1419 | -986 | -620 |
| 237 | 2nd | 3rd | H1 | 123 | -10467 | -9182 | -8679 | -7438 | -6985 | -7169 | 907 | -6562 | -6286 | -5992 | -5778 |
| 237 | 2nd | 3rd | H2 | 123 | -9340 | -9207 | -9044 | -8747 | -7482 | -7856 | 819 | -7149 | -7032 | -6964 | -6711 |
| 237 | 2nd | 3rd | H3 | 122 | -4347 | -4047 | -3976 | -3895 | -3751 | -3686 | 280 | -3449 | -3257 | -3189 | -3040 |
| 237 | Last | 3rd | H1 | 123 | -9261 | -8943 | -8733 | -8334 | -7856 | -7890 | 757 | -7465 | -7266 | -7036 | -2514 |
| 237 | Last | 3rd | H2 | 123 | -8255 | -7878 | -7745 | -7567 | -7292 | -7283 | 592 | -7129 | -6931 | -6723 | -1989 |
| 237 | Last | 3rd | H3 | 123 | -4487 | -4185 | -4130 | -3984 | -3898 | -3890 | 269 | -3812 | -3729 | -3637 | -1593 |
| 50N | 1st | 3rd | H1 | 111 | -11820 | -10992 | -10860 | -10372 | -9400 | -8820 | 2159 | -8250 | -5793 | -4349 | -1080 |
| 50N | 1st | 3rd | H2 | 111 | -10625 | -10008 | -9623 | -8895 | -7961 | -7705 | 1764 | -6809 | -5718 | -4222 | -1109 |
| 50N | 1st | 3rd | H3 | 111 | -17315 | -15673 | -14872 | -14407 | -13342 | -12473 | 3145 | -11609 | -8679 | -4668 | -559 |
| 50N | 2nd | 3rd | H1 | 111 | -10902 | -10297 | -10145 | -9802 | -9364 | -9184 | 833 | -8574 | -7927 | -7762 | -7325 |
| 50N | 2nd | 3rd | H2 | 111 | -11063 | -10558 | -10409 | -10123 | -9690 | -9756 | 460 | -9448 | -9190 | -8998 | -8854 |
| 50N | 2nd | 3rd | H3 | 112 | -18958 | -17216 | -16957 | -16256 | -15398 | -15332 | 1319 | -14264 | -13575 | -13095 | -12652 |
| 50N | Last | 3rd | H1 | 112 | -8388 | -8130 | -8026 | -7765 | -7405 | -7066 | 1416 | -7029 | -6669 | -2824 | -679 |
| 50N | Last | 3rd | H2 | 112 | -10836 | -10444 | -10249 | -10053 | -9681 | -9245 | 1780 | -9295 | -8971 | -4678 | -890 |
| 50N | Last | 3rd | H3 | 112 | -16052 | -15456 | -15311 | -14732 | -13588 | -12895 | 2942 | -12199 | -11171 | -4850 | -1035 |
| 120N | 1st | 3rd | H1 | 50 | -14121 | -13604 | -12500 | -11661 | -10182 | -9879 | 2463 | -8370 | -7133 | -4997 | -2081 |
| 120N | 1st | 3rd | H2 | 50 | -9762 | -9631 | -8930 | -8586 | -7588 | -7332 | 1539 | -6667 | -5038 | -4291 | -2834 |
| 120N | 1st | 3rd | H3 | 50 | -6633 | -6343 | -6192 | -5904 | -4537 | -4680 | 1229 | -4048 | -3433 | -2069 | -1324 |
| 120N | 2nd | 3rd | H1 | 51 | -14008 | -13823 | -13420 | -13047 | -12325 | -12265 | 980 | -11750 | -10850 | -10354 | -10173 |
| 120N | 2nd | 3rd | H2 | 51 | -10365 | -9775 | -9562 | -9334 | -8942 | -8890 | 554 | -8500 | -8205 | -8043 | -7667 |
| 120N | 2nd | 3rd | H3 | 50 | -7206 | -6928 | -6564 | -6120 | -5413 | -5529 | 771 | -4854 | -4531 | -4432 | -4350 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 120N | Last | 3rd |  | H1 | 51 | -14557 | -14297 | -14134 | -13801 | -13145 | -12434 | 2832 | -12682 | -11907 | -4218 | -1789 |
| 120N | Last | 3rd | H2 | 51 | -10878 | -10614 | -10126 | -9811 | -9329 | -8882 | 1997 | -8982 | -8405 | -3356 | -1294 |
| 120N | Last | 3rd | H3 | 51 | -6122 | -5828 | -5757 | -5382 | -4774 | -4665 | 945 | -4255 | -4084 | -2379 | -1453 |
| 240 | 1st | 3rd | H1 | 98 | -17439 | -14978 | -13526 | -11222 | -8744 | -8773 | 3471 | -6313 | -4314 | -2967 | -1235 |
| 240 | 1st | 3rd | H2 | 99 | -13774 | -13064 | -11906 | -9875 | -7279 | -7413 | 3241 | -4848 | -3188 | -2280 | -775 |
| 240 | 1st | 3rd | H3 | 98 | -5677 | -5349 | -5243 | -4361 | -3380 | -3519 | 1125 | -2856 | -2209 | -1661 | -311 |
| 240 | 2nd | 3rd | H1 | 99 | -18330 | -17388 | -15762 | -13939 | -11860 | -11604 | 3132 | -8296 | -7739 | -7568 | -7208 |
| 240 | 2nd | 3rd | H2 | 99 | -13709 | -11686 | -11304 | -10894 | -10333 | -10456 | 780 | -9961 | -9637 | -9259 | -8507 |
| 240 | 2nd | 3rd | H3 | 99 | -6116 | -6036 | -5957 | -5849 | -5711 | -5699 | 207 | -5563 | -5409 | -5345 | -5111 |
| 240 | Last | 3rd | H1 | 100 | -19667 | -17475 | -17016 | -16294 | -15010 | -14169 | 2640 | -12049 | -10304 | -9467 | -7891 |
| 240 | Last | 3rd | H2 | 100 | -11571 | -11005 | -10824 | -10067 | -9454 | -9361 | 1335 | -8850 | -8156 | -7811 | -577 |
| 240 | Last | 3rd | H3 | 99 | -7050 | -6804 | -6749 | -6463 | -6256 | -6211 | 518 | -6010 | -5799 | -5684 | -2172 |
| 182 | 1st | 3rd | H1 | 15 | -5427 | -5427 | -4950 | -3251 | -2520 | -2724 | 1423 | -1656 | -941 | -891 | -891 |
| 182 | 1st | 3rd | H2 | 15 | -4651 | -4651 | -4495 | -4072 | -3271 | -3070 | 1161 | -2445 | -1420 | -1033 | -1033 |
| 182 | 1st | 3rd | H3 | 15 | -2586 | -2586 | -2567 | -2191 | -1689 | -1677 | 600 | -1213 | -802 | -778 | -778 |
| 182 | 2nd | 3rd | H1 | 15 | -8693 | -8693 | -8622 | -8092 | -7504 | -7420 | 1071 | -7176 | -6054 | -4557 | -4557 |
| 182 | 2nd | 3rd | H2 | 15 | -9563 | -9563 | -9557 | -9363 | -8110 | -7642 | 2095 | -5886 | -4010 | -3711 | -3711 |
| 182 | 2nd | 3rd | H3 | 15 | -3461 | -3461 | -3363 | -2890 | -2680 | -2692 | 417 | -2499 | -2074 | -2018 | -2018 |
| 182 | Last | 3rd | H1 | 16 | -8301 | -8301 | -8241 | -7464 | -7287 | -7389 | 434 | -7053 | -6978 | -6931 | -6931 |
| 182 | Last | 3rd | H2 | 16 | -9557 | -9557 | -9174 | -8998 | -8596 | -8557 | 591 | -8160 | -8072 | -7092 | -7092 |
| 182 | Last | 3rd | H3 | 16 | -3543 | -3543 | -3308 | -3181 | -3074 | -3071 | 231 | -2964 | -2773 | -2555 | -2555 |
| 177 | 1st | 3rd | H1 | 9 | -3116 | -3116 | -3116 | -2478 | -2167 | -1880 | 926 | -1209 | -455 | -455 | -455 |
| 177 | 1st | 3rd | H2 | 8 | -5290 | -5290 | -5290 | -2864 | -2099 | -2527 | 1316 | -2031 | -936 | -936 | -936 |
| 177 | 1st | 3rd | H3 | 6 | -1618 | -1618 | -1618 | -1120 | -1051 | -1127 | 251 | -1000 | -922 | -922 | -922 |
| 177 | 2nd | 3rd | H1 | 9 | -6845 | -6845 | -6845 | -2873 | -2447 | -2969 | 1980 | -1707 | -1247 | -1247 | -1247 |
| 177 | 2nd | 3 rd | H2 | 9 | -4607 | -4607 | -4607 | -1996 | -1828 | -2074 | 1109 | -1301 | -1002 | -1002 | -1002 |
| 177 | 2nd | 3rd | H3 | 7 | -1549 | -1549 | -1549 | -1490 | -779 | -998 | 446 | -596 | -530 | -530 | -530 |
| 177 | Last | 3rd | H1 | 10 | -3862 | -3862 | -3626 | -2971 | -2617 | -2697 | 602 | -2097 | -2050 | -2035 | -2035 |
| 177 | Last | 3 rd | H2 | 9 | -2436 | -2436 | -2436 | -2340 | -2245 | -2179 | 222 | -1938 | -1869 | -1869 | -1869 |
| 177 | Last | 3rd | H3 | 8 | -899 | -899 | -899 | -846 | -772 | -774 | 95 | -714 | -625 | -625 | -625 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 174 | 1st | 3rd |  | H1 | 17 | -5290 | -5290 | -5158 | -3096 | -2560 | -2830 | 1213 | -2464 | -1101 | -382 | -382 |
| 174 | 1st | 3rd | H2 | 17 | -6418 | -6418 | -4839 | -4092 | -3499 | -3638 | 1053 | -3229 | -2654 | -1483 | -1483 |
| 174 | 1st | 3rd | H3 | 16 | -2127 | -2127 | -2057 | -1782 | -1452 | -1542 | 315 | -1300 | -1205 | -1049 | -1049 |
| 174 | 2nd | 3rd | H1 | 18 | -2227 | -2227 | -2199 | -2097 | -1684 | -1619 | 446 | -1286 | -855 | -762 | -762 |
| 174 | 2nd | 3rd | H2 | 18 | -4694 | -4694 | -4600 | -4092 | -3915 | -3613 | 912 | -3103 | -2000 | -1594 | -1594 |
| 174 | 2nd | 3rd | H3 | 17 | -1646 | -1646 | -1418 | -1158 | -974 | -1038 | 265 | -899 | -757 | -590 | -590 |
| 174 | Last | 3rd | H1 | 19 | -4108 | -4108 | -4068 | -3747 | -3186 | -3161 | 691 | -2615 | -1912 | -1841 | -1841 |
| 174 | Last | 3rd | H2 | 18 | -7148 | -7148 | -6836 | -6306 | -5571 | -5438 | 1214 | -4943 | -4262 | -1815 | -1815 |
| 174 | Last | 3rd | H3 | 17 | -1899 | -1899 | -1834 | -1704 | -1459 | -1415 | 321 | -1159 | -959 | -928 | -928 |
| 181 | 1st | 3 rd | H1 | 16 | -5630 | -5630 | -5135 | -3964 | -3231 | -2988 | 1475 | -1731 | -1041 | -824 | -824 |
| 181 | 1st | 3rd | H2 | 15 | -3843 | -3843 | -3635 | -2927 | -2253 | -2247 | 925 | -1474 | -965 | -953 | -953 |
| 181 | 1st | 3rd | H3 | 14 | -1991 | -1991 | -1723 | -1463 | -1179 | -1220 | 402 | -974 | -800 | -417 | -417 |
| 181 | 2nd | 3rd | H1 | 16 | -4628 | -4628 | -4146 | -3967 | -3550 | -3505 | 716 | -3350 | -2756 | -1474 | -1474 |
| 181 | 2nd | 3rd | H2 | 16 | -3127 | -3127 | -3014 | -2746 | -2521 | -2443 | 458 | -2083 | -1746 | -1519 | -1519 |
| 181 | 2nd | 3rd | H3 | 15 | -1263 | -1263 | -1204 | -1164 | -1047 | -1043 | 138 | -935 | -819 | -818 | -818 |
| 181 | Last | 3rd | H1 | 17 | -6580 | -6580 | -6374 | -6023 | -5606 | -5324 | 1159 | -5313 | -4052 | -1848 | -1848 |
| 181 | Last | 3rd | H2 | 16 | -5179 | -5179 | -5155 | -4710 | -4451 | -4086 | 1101 | -3609 | -3054 | -677 | -677 |
| 181 | Last | 3rd | H3 | 16 | -1917 | -1917 | -1656 | -1475 | -1326 | -1384 | 194 | -1269 | -1207 | -1151 | -1151 |
| 167 | 1st | 3rd | H1 | 33 | -15405 | -14637 | -14306 | -6304 | -4404 | -5626 | 3908 | -2997 | -2064 | -1625 | -824 |
| 167 | 1st | 3rd | H2 | 32 | -7628 | -7219 | -5659 | -4499 | -2356 | -3054 | 1904 | -1647 | -1244 | -989 | -912 |
| 167 | 1st | 3rd | H3 | 21 | -11165 | -2540 | -1995 | -1633 | -1455 | -1779 | 2211 | -925 | -810 | -784 | -298 |
| 167 | 2nd | 3rd | H1 | 34 | -8643 | -7071 | -6633 | -6121 | -5673 | -5700 | 883 | -5164 | -4735 | -4463 | -3835 |
| 167 | 2nd | 3rd | H2 | 33 | -3069 | -2538 | -2456 | -2301 | -1795 | -1907 | 419 | -1569 | -1434 | -1426 | -1416 |
| 167 | 2nd | 3rd | H3 | 22 | -1182 | -1150 | -1139 | -1097 | -974 | -882 | 254 | -667 | -480 | -477 | -372 |
| 167 | Last | 3rd | H1 | 35 | -7960 | -7730 | -7591 | -7293 | -6768 | -6687 | 725 | -5965 | -5629 | -5499 | -5444 |
| 167 | Last | 3rd | H2 | 34 | -2548 | -2362 | -2309 | -2188 | -2051 | -1988 | 269 | -1711 | -1597 | -1569 | -1566 |
| 167 | Last | 3 rd | H3 | 23 | -1460 | -1377 | -1342 | -1293 | -1187 | -1050 | 302 | -710 | -629 | -626 | -523 |
| 178 | 1st | 3 rd | H1 | 17 | -10270 | -10270 | -7064 | -6257 | -4576 | -4385 | 2712 | -1997 | -503 | -488 | -488 |
| 178 | 1st | 3rd | H2 | 17 | -8584 | -8584 | -8009 | -6042 | -3916 | -4312 | 2413 | -2832 | -1210 | -504 | -504 |
| 178 | 1st | 3rd | H3 | 16 | -2843 | -2843 | -2729 | -2324 | -1599 | -1702 | 679 | -1192 | -788 | -673 | -673 |

Table B.3. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Peak Negative Sound Pressure (Pa) During 95 ${ }^{\text {th }}$ Percentile Pulse Duration |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 178 | 2nd | 3rd |  | H1 | 18 | -8573 | -8573 | -8560 | -8105 | -7729 | -7451 | 1098 | -7351 | -5159 | -4747 | -4747 |
| 178 | 2nd | 3rd | H2 | 17 | -10527 | -10527 | -10441 | -10014 | -9463 | -8625 | 2147 | -8796 | -4914 | -3961 | -3961 |
| 178 | 2nd | 3rd | H3 | 17 | -2773 | -2773 | -2698 | -2507 | -2326 | -2323 | 281 | -2151 | -1913 | -1764 | -1764 |
| 178 | Last | 3rd | H1 | 18 | -9884 | -9884 | -9306 | -8454 | -8096 | -8216 | 612 | -7835 | -7495 | -7455 | -7455 |
| 178 | Last | 3rd | H2 | 18 | -12239 | -12239 | -11517 | -11022 | -10571 | -10579 | 713 | -9959 | -9764 | -9554 | -9554 |
| 178 | Last | 3rd | H3 | 17 | -3314 | -3314 | -3201 | -2940 | -2524 | -2659 | 351 | -2443 | -2241 | -2237 | -2237 |
| 244 | 1st | 3rd | H1 | 17 | -7040 | -7040 | -6597 | -5139 | -4297 | -3967 | 2069 | -2739 | -817 | -797 | -797 |
| 244 | 1st | 3rd | H2 | 16 | -5235 | -5235 | -4701 | -3274 | -2825 | -2917 | 1145 | -2321 | -1775 | -648 | -648 |
| 244 | 1st | 3rd | H3 | 16 | -3725 | -3725 | -2798 | -2337 | -2106 | -2089 | 646 | -1640 | -1319 | -1091 | -1091 |
| 244 | 2nd | 3rd | H1 | 18 | -13941 | -13941 | -8696 | -5801 | -4700 | -5326 | 2663 | -3994 | -3147 | -1182 | -1182 |
| 244 | 2nd | 3rd | H2 | 17 | -5475 | -5475 | -3345 | -2693 | -2523 | -2593 | 895 | -2340 | -1825 | -971 | -971 |
| 244 | 2nd | 3rd | H3 | 16 | -3850 | -3850 | -1938 | -1645 | -1526 | -1587 | 665 | -1265 | -1198 | -724 | -724 |
| 244 | Last | 3rd | H1 | 19 | -14557 | -14557 | -6048 | -5223 | -4980 | -5422 | 2257 | -4585 | -4394 | -4290 | -4290 |
| 244 | Last | 3rd | H2 | 18 | -6250 | -6250 | -3340 | -3143 | -2905 | -3008 | 880 | -2586 | -2291 | -2170 | -2170 |
| 244 | Last | 3rd | H3 | 17 | -4693 | -4693 | -2334 | -1739 | -1597 | -1788 | 792 | -1398 | -1327 | -1239 | -1239 |

Table B.4. Distribution Statistics for the 95th Percentile Sound Durations (Seconds) of Strikes Within a Series on the Indicated Pile

| Pile ID | Impact Time Series |  | Hydrophone | Number <br> of <br> Impacts | $95^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 121N | 1st | 3rd |  | H1 | 98 | 0.0312 | 0.0338 | 0.0375 | 0.0460 | 0.0546 | 0.0553 | 0.0151 | 0.0615 | 0.0718 | 0.0866 | 0.1348 |
| 121N | 1st | 3rd | H2 | 98 | 0.0336 | 0.0351 | 0.0385 | 0.0474 | 0.0517 | 0.0507 | 0.0080 | 0.0559 | 0.0600 | 0.0611 | 0.0737 |
| 121N | 1st | 3rd | H3 | 97 | 0.0401 | 0.0441 | 0.0467 | 0.0504 | 0.0595 | 0.0594 | 0.0121 | 0.0652 | 0.0747 | 0.0825 | 0.1104 |
| 121N | 2nd | 3rd | H1 | 99 | 0.0540 | 0.0556 | 0.0590 | 0.0669 | 0.0741 | 0.0796 | 0.0218 | 0.0858 | 0.1015 | 0.1312 | 0.1606 |
| 121N | 2nd | 3rd | H2 | 99 | 0.0549 | 0.0595 | 0.0619 | 0.0735 | 0.0861 | 0.0845 | 0.0178 | 0.0942 | 0.1002 | 0.1171 | 0.1592 |
| 121N | 2nd | 3rd | H3 | 98 | 0.0645 | 0.0684 | 0.0734 | 0.0886 | 0.1212 | 0.1157 | 0.0286 | 0.1409 | 0.1529 | 0.1554 | 0.1642 |
| 121N | Last | 3rd | H1 | 99 | 0.0492 | 0.0511 | 0.0544 | 0.0574 | 0.0603 | 0.0650 | 0.0345 | 0.0633 | 0.0714 | 0.0812 | 0.3936 |
| 121N | Last | 3rd | H2 | 99 | 0.0485 | 0.0502 | 0.0542 | 0.0572 | 0.0591 | 0.0661 | 0.0466 | 0.0617 | 0.0734 | 0.0910 | 0.5132 |
| 121N | Last | 3rd | H3 | 99 | 0.0518 | 0.0525 | 0.0539 | 0.0587 | 0.0617 | 0.0747 | 0.0493 | 0.0743 | 0.1060 | 0.1307 | 0.5121 |
| 52N | 1st | 3rd | H1 | 35 | 0.0492 | 0.0497 | 0.0513 | 0.0549 | 0.0576 | 0.0656 | 0.0201 | 0.0735 | 0.0849 | 0.1187 | 0.1466 |
| 52N | 1st | 3rd | H2 | 35 | 0.0548 | 0.0548 | 0.0620 | 0.0631 | 0.0726 | 0.0762 | 0.0197 | 0.0806 | 0.0930 | 0.1264 | 0.1487 |
| 52N | 1st | 3rd | H3 | 35 | 0.0497 | 0.0499 | 0.0524 | 0.0555 | 0.0606 | 0.0682 | 0.0212 | 0.0749 | 0.0854 | 0.1282 | 0.1509 |
| 52N | 2nd | 3rd | H1 | 36 | 0.0410 | 0.0425 | 0.0454 | 0.0488 | 0.0564 | 0.0554 | 0.0083 | 0.0606 | 0.0617 | 0.0701 | 0.0820 |
| 52N | 2nd | 3rd | H2 | 36 | 0.0329 | 0.0353 | 0.0367 | 0.0404 | 0.0553 | 0.0520 | 0.0122 | 0.0598 | 0.0631 | 0.0715 | 0.0862 |
| 52N | 2nd | 3rd | H3 | 36 | 0.0467 | 0.0527 | 0.0546 | 0.0601 | 0.0617 | 0.0633 | 0.0071 | 0.0680 | 0.0725 | 0.0726 | 0.0848 |
| 52N | Last | 3rd | H1 | 36 | 0.0406 | 0.0441 | 0.0464 | 0.0507 | 0.0559 | 0.0573 | 0.0121 | 0.0592 | 0.0709 | 0.0929 | 0.0985 |
| 52N | Last | 3rd | H2 | 36 | 0.0295 | 0.0309 | 0.0326 | 0.0371 | 0.0429 | 0.0434 | 0.0084 | 0.0475 | 0.0540 | 0.0627 | 0.0662 |
| 52N | Last | 3rd | H3 | 36 | 0.0519 | 0.0586 | 0.0593 | 0.0606 | 0.0627 | 0.0680 | 0.0141 | 0.0684 | 0.1016 | 0.1037 | 0.1114 |
| 118N | 1st | 3rd | H1 | 67 | 0.0355 | 0.0376 | 0.0418 | 0.0455 | 0.0479 | 0.0506 | 0.0138 | 0.0538 | 0.0587 | 0.0606 | 0.1491 |
| 118N | 1st | 3rd | H2 | 67 | 0.0611 | 0.0646 | 0.0685 | 0.0757 | 0.0773 | 0.0836 | 0.0186 | 0.0827 | 0.1176 | 0.1244 | 0.1612 |
| 118N | 1st | 3rd | H3 | 66 | 0.0640 | 0.0840 | 0.1094 | 0.1273 | 0.1475 | 0.1417 | 0.0401 | 0.1528 | 0.1581 | 0.1618 | 0.3981 |
| 118N | 2nd | 3rd | H1 | 68 | 0.0491 | 0.0576 | 0.0590 | 0.0641 | 0.0655 | 0.0683 | 0.0088 | 0.0710 | 0.0836 | 0.0867 | 0.0972 |
| 118N | 2nd | 3rd | H2 | 67 | 0.0698 | 0.0744 | 0.0757 | 0.0793 | 0.0807 | 0.0807 | 0.0040 | 0.0825 | 0.0865 | 0.0879 | 0.0923 |
| 118N | 2nd | 3rd | H3 | 67 | 0.0866 | 0.0924 | 0.0990 | 0.1134 | 0.1334 | 0.1319 | 0.0226 | 0.1508 | 0.1573 | 0.1606 | 0.1757 |
| 118N | Last | 3rd | H1 | 68 | 0.0374 | 0.0604 | 0.0610 | 0.0626 | 0.0651 | 0.0783 | 0.0792 | 0.0720 | 0.0865 | 0.0890 | 0.7152 |
| 118N | Last | 3rd | H2 | 68 | 0.0507 | 0.0710 | 0.0728 | 0.0767 | 0.0819 | 0.0810 | 0.0076 | 0.0853 | 0.0881 | 0.0885 | 0.1093 |
| 118N | Last | 3rd | H3 | 67 | 0.0687 | 0.0899 | 0.0948 | 0.0996 | 0.1058 | 0.1092 | 0.0146 | 0.1191 | 0.1298 | 0.1309 | 0.1499 |

Table B.4. (continued)

| Pile ID |  |  | Hydrophone | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Impacts } \end{aligned}$ | 95 ${ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $50^{\text {th }}$ (Median) | Average | st dev | $75^{\text {th }}$ | 90 ${ }^{\text {th }}$ | 95 ${ }^{\text {th }}$ | Maximum |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ |  | H1 | 77 | 0.0248 | 0.0261 | 0.0269 | 0.0272 | 0.0293 | 0.0316 | 0.0058 | 0.0354 | 0.0385 | 0.0427 | 0.0522 |
| 255 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 77 | 0.0252 | 0.0269 | 0.0270 | 0.0277 | 0.0304 | 0.0314 | 0.0045 | 0.0334 | 0.0356 | 0.0383 | 0.0544 |
| 255 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 77 | 0.0391 | 0.0448 | 0.0514 | 0.0553 | 0.0710 | 0.1436 | 0.1471 | 0.1827 | 0.3599 | 0.4526 | 0.7628 |
| 255 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 78 | 0.0259 | 0.0264 | 0.0268 | 0.0278 | 0.0303 | 0.0320 | 0.0056 | 0.0348 | 0.0417 | 0.0432 | 0.0474 |
| 255 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 78 | 0.0272 | 0.0299 | 0.0300 | 0.0303 | 0.0318 | 0.0347 | 0.0061 | 0.0374 | 0.0455 | 0.0474 | 0.0524 |
| 255 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 78 | 0.0481 | 0.0542 | 0.0557 | 0.0771 | 0.1029 | 0.2206 | 0.2204 | 0.3299 | 0.6556 | 0.7243 | 0.7908 |
| 255 | Last | $3{ }^{\text {rd }}$ | H1 | 79 | 0.0375 | 0.0396 | 0.0411 | 0.0445 | 0.0454 | 0.0472 | 0.0060 | 0.0497 | 0.0551 | 0.0559 | 0.0780 |
| 255 | Last | $3{ }^{\text {rd }}$ | H2 | 79 | 0.0301 | 0.0317 | 0.0330 | 0.0376 | 0.0464 | 0.0451 | 0.0086 | 0.0506 | 0.0554 | 0.0562 | 0.0795 |
| 255 | Last | $3^{\text {rd }}$ | H3 | 79 | 0.0529 | 0.0547 | 0.0557 | 0.0691 | 0.1021 | 0.1744 | 0.1541 | 0.2106 | 0.4405 | 0.5396 | 0.6623 |
| 249 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 168 | 0.0227 | 0.0306 | 0.0327 | 0.0347 | 0.0375 | 0.0412 | 0.0185 | 0.0406 | 0.0456 | 0.0624 | 0.1962 |
| 249 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 168 | 0.0210 | 0.0232 | 0.0241 | 0.0268 | 0.0305 | 0.0318 | 0.0143 | 0.0331 | 0.0370 | 0.0420 | 0.1938 |
| 249 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 168 | 0.0391 | 0.0479 | 0.0520 | 0.0772 | 0.2159 | 0.2935 | 0.2251 | 0.4897 | 0.6157 | 0.6730 | 0.7803 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 168 | 0.0216 | 0.0320 | 0.0336 | 0.0390 | 0.0412 | 0.0412 | 0.0077 | 0.0434 | 0.0454 | 0.0483 | 0.1050 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 168 | 0.0252 | 0.0275 | 0.0282 | 0.0303 | 0.0329 | 0.0358 | 0.0154 | 0.0375 | 0.0435 | 0.0473 | 0.2048 |
| 249 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 168 | 0.0432 | 0.0443 | 0.0450 | 0.0492 | 0.0627 | 0.1395 | 0.1511 | 0.1432 | 0.3993 | 0.4933 | 0.6845 |
| 249 | Last | $3{ }^{\text {rd }}$ | H1 | 170 | 0.0242 | 0.0285 | 0.0293 | 0.0325 | 0.0404 | 0.0396 | 0.0086 | 0.0452 | 0.0494 | 0.0518 | 0.0949 |
| 249 | Last | $3{ }^{\text {rd }}$ | H2 | 170 | 0.0270 | 0.0277 | 0.0283 | 0.0296 | 0.0307 | 0.0316 | 0.0068 | 0.0321 | 0.0336 | 0.0364 | 0.1120 |
| 249 | Last | $3{ }^{\text {rd }}$ | H3 | 169 | 0.0442 | 0.0466 | 0.0475 | 0.0530 | 0.0730 | 0.1710 | 0.1813 | 0.2236 | 0.4915 | 0.5925 | 0.7538 |
| 252 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H1 | 85 | 0.0309 | 0.0341 | 0.0367 | 0.0395 | 0.0419 | 0.0482 | 0.0229 | 0.0479 | 0.0634 | 0.0684 | 0.2167 |
| 252 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H2 | 85 | 0.0309 | 0.0341 | 0.0367 | 0.0395 | 0.0419 | 0.0482 | 0.0229 | 0.0479 | 0.0634 | 0.0684 | 0.2167 |
| 252 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 84 | 0.0277 | 0.0335 | 0.0339 | 0.0370 | 0.0406 | 0.0446 | 0.0236 | 0.0450 | 0.0511 | 0.0625 | 0.2373 |
| 252 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H1 | 85 | 0.0475 | 0.0529 | 0.0652 | 0.1222 | 0.2590 | 0.3203 | 0.2249 | 0.5291 | 0.6492 | 0.6775 | 0.7563 |
| 252 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 85 | 0.0188 | 0.0204 | 0.0206 | 0.0212 | 0.0240 | 0.0272 | 0.0075 | 0.0307 | 0.0405 | 0.0427 | 0.0462 |
| 252 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 84 | 0.0188 | 0.0204 | 0.0206 | 0.0212 | 0.0240 | 0.0272 | 0.0075 | 0.0307 | 0.0405 | 0.0427 | 0.0462 |
| 252 | Last | $3{ }^{\text {rd }}$ | H1 | 86 | 0.0249 | 0.0253 | 0.0278 | 0.0317 | 0.0357 | 0.0360 | 0.0062 | 0.0395 | 0.0447 | 0.0486 | 0.0525 |
| 252 | Last | $3{ }^{\text {rd }}$ | H2 | 86 | 0.0471 | 0.0520 | 0.0582 | 0.1004 | 0.1584 | 0.2469 | 0.1953 | 0.3887 | 0.5817 | 0.6294 | 0.7225 |
| 252 | Last | $3^{\text {rd }}$ | H3 | 85 | 0.0229 | 0.0234 | 0.0240 | 0.0256 | 0.0270 | 0.0267 | 0.0018 | 0.0281 | 0.0286 | 0.0293 | 0.0306 |
| 172 | $1^{\text {st }}$ | $3^{\text {rd }}$ | H1 | 64 | 0.0229 | 0.0234 | 0.0240 | 0.0256 | 0.0270 | 0.0267 | 0.0018 | 0.0281 | 0.0286 | 0.0293 | 0.0306 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 64 | 0.0254 | 0.0262 | 0.0264 | 0.0276 | 0.0294 | 0.0293 | 0.0019 | 0.0313 | 0.0318 | 0.0320 | 0.0329 |
| 172 | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 62 | 0.0411 | 0.0443 | 0.0495 | 0.0649 | 0.1039 | 0.1505 | 0.1286 | 0.1652 | 0.3410 | 0.4650 | 0.6369 |

Table B.4. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Impacts } \end{aligned}$ | $95{ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 172 | $2^{\text {nd }}$ | $3^{\text {rd }}$ |  | H1 | 65 | 0.0221 | 0.0291 | 0.0317 | 0.0385 | 0.0545 | 0.0900 | 0.1222 | 0.0934 | 0.1188 | 0.2139 | 0.7473 |
| 172 | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H2 | 65 | 0.0199 | 0.0229 | 0.0239 | 0.0275 | 0.0329 | 0.0462 | 0.0433 | 0.0407 | 0.0685 | 0.1604 | 0.2566 |
| 172 | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 63 | 0.0257 | 0.0266 | 0.0275 | 0.0314 | 0.0427 | 0.0667 | 0.0915 | 0.0622 | 0.1144 | 0.1328 | 0.6474 |
| 172 | Last | $3^{\text {rd }}$ | H1 | 65 | 0.0215 | 0.0226 | 0.0227 | 0.0230 | 0.0235 | 0.0244 | 0.0019 | 0.0262 | 0.0264 | 0.0270 | 0.0318 |
| 172 | Last | $3^{\text {rd }}$ | H2 | 65 | 0.0170 | 0.0174 | 0.0175 | 0.0182 | 0.0192 | 0.0198 | 0.0021 | 0.0211 | 0.0226 | 0.0232 | 0.0276 |
| 172 | Last | $3^{\text {rd }}$ | H3 | 63 | 0.0333 | 0.0360 | 0.0362 | 0.0364 | 0.0373 | 0.0385 | 0.0031 | 0.0404 | 0.0439 | 0.0441 | 0.0484 |
| 171 | 1st | 3rd | H1 | 134 | 0.0187 | 0.0223 | 0.0227 | 0.0241 | 0.0247 | 0.0248 | 0.0015 | 0.0262 | 0.0266 | 0.0268 | 0.0268 |
| 171 | 1st | 3rd | H2 | 134 | 0.0110 | 0.0122 | 0.0131 | 0.0135 | 0.0175 | 0.0170 | 0.0035 | 0.0205 | 0.0213 | 0.0214 | 0.0225 |
| 171 | 1st | 3rd | H3 | 132 | 0.0330 | 0.0336 | 0.0339 | 0.0392 | 0.0437 | 0.0418 | 0.0039 | 0.0443 | 0.0447 | 0.0460 | 0.0463 |
| 171 | 2nd | 3rd | H1 | 135 | 0.0227 | 0.0248 | 0.0266 | 0.0275 | 0.0347 | 0.0363 | 0.0119 | 0.0415 | 0.0470 | 0.0553 | 0.0978 |
| 171 | 2nd | 3rd | H2 | 135 | 0.0168 | 0.0187 | 0.0193 | 0.0202 | 0.0242 | 0.0288 | 0.0129 | 0.0306 | 0.0457 | 0.0497 | 0.0926 |
| 171 | 2nd | 3rd | H3 | 132 | 0.0245 | 0.0256 | 0.0261 | 0.0315 | 0.0347 | 0.0370 | 0.0103 | 0.0379 | 0.0504 | 0.0583 | 0.0766 |
| 171 | Last | 3rd | H1 | 136 | 0.0199 | 0.0224 | 0.0239 | 0.0244 | 0.0280 | 0.0354 | 0.0151 | 0.0465 | 0.0503 | 0.0587 | 0.1274 |
| 171 | Last | 3rd | H2 | 136 | 0.0144 | 0.0146 | 0.0148 | 0.0161 | 0.0190 | 0.0195 | 0.0075 | 0.0214 | 0.0240 | 0.0254 | 0.0950 |
| 171 | Last | 3rd | H3 | 133 | 0.0165 | 0.0283 | 0.0292 | 0.0320 | 0.0344 | 0.0339 | 0.0039 | 0.0361 | 0.0380 | 0.0401 | 0.0478 |
| 238 | 1st | 3rd | H1 | 72 | 0.0174 | 0.0182 | 0.0207 | 0.0234 | 0.0248 | 0.0252 | 0.0054 | 0.0261 | 0.0298 | 0.0313 | 0.0706 |
| 238 | 1st | 3rd | H2 | 71 | 0.0116 | 0.0134 | 0.0144 | 0.0149 | 0.0180 | 0.0178 | 0.0053 | 0.0190 | 0.0198 | 0.0231 | 0.0696 |
| 238 | 1st | 3rd | H3 | 67 | 0.0128 | 0.0157 | 0.0158 | 0.0164 | 0.0196 | 0.0243 | 0.0097 | 0.0332 | 0.0354 | 0.0368 | 0.0708 |
| 238 | 2nd | 3rd | H1 | 73 | 0.0215 | 0.0241 | 0.0261 | 0.0433 | 0.0488 | 0.0748 | 0.0866 | 0.0604 | 0.1035 | 0.2473 | 0.5456 |
| 238 | 2nd | 3rd | H2 | 72 | 0.0176 | 0.0181 | 0.0184 | 0.0253 | 0.0584 | 0.1045 | 0.1259 | 0.1096 | 0.2460 | 0.4104 | 0.5751 |
| 238 | 2nd | 3rd | H3 | 68 | 0.0178 | 0.0199 | 0.0213 | 0.0273 | 0.0413 | 0.1355 | 0.1796 | 0.1673 | 0.4447 | 0.6247 | 0.7209 |
| 238 | Last | 3rd | H1 | 73 | 0.0196 | 0.0198 | 0.0201 | 0.0224 | 0.0252 | 0.0271 | 0.0070 | 0.0298 | 0.0385 | 0.0405 | 0.0532 |
| 238 | Last | 3rd | H2 | 73 | 0.0145 | 0.0146 | 0.0151 | 0.0163 | 0.0194 | 0.0208 | 0.0047 | 0.0256 | 0.0270 | 0.0274 | 0.0295 |
| 238 | Last | 3rd | H3 | 69 | 0.0178 | 0.0184 | 0.0191 | 0.0202 | 0.0304 | 0.0284 | 0.0077 | 0.0334 | 0.0360 | 0.0398 | 0.0522 |
| 235 | 1st | 3rd | H1 | 85 | 0.0129 | 0.0177 | 0.0195 | 0.0198 | 0.0218 | 0.0213 | 0.0020 | 0.0227 | 0.0236 | 0.0241 | 0.0251 |
| 235 | 1st | 3rd | H2 | 85 | 0.0187 | 0.0272 | 0.0274 | 0.0279 | 0.0304 | 0.0296 | 0.0022 | 0.0315 | 0.0316 | 0.0317 | 0.0320 |
| 235 | 1st | 3rd | H3 | 85 | 0.0347 | 0.0404 | 0.0433 | 0.0463 | 0.0483 | 0.0475 | 0.0034 | 0.0500 | 0.0505 | 0.0522 | 0.0533 |
| 235 | 2nd | 3rd | H1 | 86 | 0.0220 | 0.0252 | 0.0260 | 0.0279 | 0.0331 | 0.0373 | 0.0272 | 0.0362 | 0.0472 | 0.0581 | 0.2609 |
| 235 | 2nd | 3rd | H2 | 86 | 0.0240 | 0.0268 | 0.0300 | 0.0315 | 0.0360 | 0.0439 | 0.0367 | 0.0419 | 0.0501 | 0.0578 | 0.2539 |
| 235 | 2nd | 3rd | H3 | 86 | 0.0201 | 0.0208 | 0.0217 | 0.0221 | 0.0286 | 0.0487 | 0.0879 | 0.0392 | 0.0578 | 0.0587 | 0.5646 |

Table B.4. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \\ \hline \end{gathered}$ | $95{ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 235 | Last | 3rd |  | H1 | 86 | 0.0205 | 0.0234 | 0.0247 | 0.0259 | 0.0283 | 0.0288 | 0.0042 | 0.0306 | 0.0332 | 0.0371 | 0.0482 |
| 235 | Last | 3rd | H2 | 86 | 0.0230 | 0.0233 | 0.0242 | 0.0251 | 0.0271 | 0.0273 | 0.0026 | 0.0294 | 0.0304 | 0.0314 | 0.0353 |
| 235 | Last | 3rd | H3 | 86 | 0.0225 | 0.0244 | 0.0260 | 0.0265 | 0.0280 | 0.0287 | 0.0033 | 0.0302 | 0.0338 | 0.0342 | 0.0412 |
| 237 | 1st | 3rd | H1 | 122 | 0.0157 | 0.0248 | 0.0250 | 0.0371 | 0.0410 | 0.0385 | 0.0076 | 0.0419 | 0.0468 | 0.0480 | 0.0595 |
| 237 | 1st | 3rd | H2 | 122 | 0.0234 | 0.0300 | 0.0310 | 0.0350 | 0.0392 | 0.0392 | 0.0068 | 0.0422 | 0.0471 | 0.0479 | 0.0652 |
| 237 | 1st | 3rd | H3 | 121 | 0.0302 | 0.0303 | 0.0305 | 0.0332 | 0.0384 | 0.0368 | 0.0040 | 0.0397 | 0.0415 | 0.0426 | 0.0444 |
| 237 | 2nd | 3rd | H1 | 123 | 0.0211 | 0.0225 | 0.0229 | 0.0240 | 0.0295 | 0.0329 | 0.0165 | 0.0337 | 0.0426 | 0.0607 | 0.1454 |
| 237 | 2nd | 3rd | H2 | 123 | 0.0240 | 0.0270 | 0.0277 | 0.0295 | 0.0351 | 0.0434 | 0.0451 | 0.0390 | 0.0450 | 0.0685 | 0.4138 |
| 237 | 2nd | 3rd | H3 | 122 | 0.0267 | 0.0282 | 0.0286 | 0.0325 | 0.0410 | 0.0839 | 0.1267 | 0.0569 | 0.1720 | 0.4485 | 0.6471 |
| 237 | Last | 3rd | H1 | 123 | 0.0262 | 0.0283 | 0.0293 | 0.0312 | 0.0373 | 0.0368 | 0.0054 | 0.0396 | 0.0439 | 0.0462 | 0.0496 |
| 237 | Last | 3rd | H2 | 123 | 0.0197 | 0.0210 | 0.0223 | 0.0252 | 0.0287 | 0.0296 | 0.0055 | 0.0338 | 0.0367 | 0.0393 | 0.0438 |
| 237 | Last | 3rd | H3 | 123 | 0.0283 | 0.0314 | 0.0328 | 0.0379 | 0.0397 | 0.0394 | 0.0043 | 0.0420 | 0.0445 | 0.0452 | 0.0499 |
| 50N | 1st | 3rd | H1 | 111 | 0.0348 | 0.0386 | 0.0396 | 0.0423 | 0.0459 | 0.0478 | 0.0107 | 0.0499 | 0.0539 | 0.0606 | 0.1269 |
| 50N | 1st | 3rd | H2 | 111 | 0.0365 | 0.0412 | 0.0435 | 0.0453 | 0.0484 | 0.0511 | 0.0117 | 0.0528 | 0.0575 | 0.0699 | 0.1144 |
| 50N | 1st | 3rd | H3 | 111 | 0.0352 | 0.0365 | 0.0377 | 0.0397 | 0.0447 | 0.0495 | 0.0236 | 0.0514 | 0.0577 | 0.0609 | 0.2434 |
| 50N | 2nd | 3rd | H1 | 111 | 0.0400 | 0.0431 | 0.0452 | 0.0468 | 0.0507 | 0.0502 | 0.0043 | 0.0525 | 0.0561 | 0.0574 | 0.0630 |
| 50N | 2nd | 3rd | H2 | 111 | 0.0391 | 0.0423 | 0.0438 | 0.0452 | 0.0470 | 0.0476 | 0.0042 | 0.0492 | 0.0519 | 0.0544 | 0.0674 |
| 50N | 2nd | 3rd | H3 | 112 | 0.0426 | 0.0457 | 0.0465 | 0.0497 | 0.0526 | 0.0548 | 0.0072 | 0.0592 | 0.0659 | 0.0680 | 0.0792 |
| 50N | Last | 3rd | H1 | 112 | 0.0405 | 0.0416 | 0.0428 | 0.0441 | 0.0469 | 0.0606 | 0.0565 | 0.0612 | 0.0650 | 0.1128 | 0.6118 |
| 50N | Last | 3rd | H2 | 112 | 0.0414 | 0.0427 | 0.0435 | 0.0453 | 0.0483 | 0.0612 | 0.0481 | 0.0639 | 0.0665 | 0.1139 | 0.5084 |
| 50N | Last | 3rd | H3 | 112 | 0.0454 | 0.0481 | 0.0500 | 0.0527 | 0.0601 | 0.0645 | 0.0234 | 0.0674 | 0.0685 | 0.1143 | 0.2439 |
| 120N | 1st | 3rd | H1 | 50 | 0.0349 | 0.0355 | 0.0364 | 0.0380 | 0.0441 | 0.0516 | 0.0173 | 0.0608 | 0.0719 | 0.0760 | 0.1198 |
| 120N | 1st | 3rd | H2 | 50 | 0.0330 | 0.0362 | 0.0367 | 0.0391 | 0.0475 | 0.0543 | 0.0191 | 0.0655 | 0.0782 | 0.0945 | 0.1226 |
| 120N | 1st | 3rd | H3 | 50 | 0.0318 | 0.0334 | 0.0336 | 0.0345 | 0.0404 | 0.0454 | 0.0146 | 0.0518 | 0.0604 | 0.0660 | 0.1187 |
| 120N | 2nd | 3rd | H1 | 51 | 0.0353 | 0.0356 | 0.0359 | 0.0363 | 0.0367 | 0.0387 | 0.0032 | 0.0407 | 0.0416 | 0.0467 | 0.0472 |
| 120N | 2nd | 3rd | H2 | 51 | 0.0360 | 0.0370 | 0.0380 | 0.0405 | 0.0426 | 0.0435 | 0.0040 | 0.0472 | 0.0484 | 0.0499 | 0.0506 |
| 120N | 2nd | 3rd | H3 | 50 | 0.0335 | 0.0340 | 0.0341 | 0.0345 | 0.0373 | 0.0377 | 0.0033 | 0.0399 | 0.0432 | 0.0440 | 0.0445 |
| 120N | Last | 3rd | H1 | 51 | 0.0318 | 0.0349 | 0.0354 | 0.0358 | 0.0361 | 0.0372 | 0.0079 | 0.0363 | 0.0364 | 0.0415 | 0.0914 |
| 120N | Last | 3rd | H2 | 51 | 0.0361 | 0.0369 | 0.0378 | 0.0392 | 0.0407 | 0.0470 | 0.0270 | 0.0430 | 0.0476 | 0.0760 | 0.2014 |
| 120N | Last | 3rd | H3 | 51 | 0.0335 | 0.0340 | 0.0343 | 0.0347 | 0.0352 | 0.0361 | 0.0029 | 0.0364 | 0.0386 | 0.0442 | 0.0488 |

Table B.4. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | $95{ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 240 | 1st | 3rd |  | H1 | 98 | 0.0230 | 0.0253 | 0.0262 | 0.0284 | 0.0327 | 0.0375 | 0.0167 | 0.0403 | 0.0534 | 0.0604 | 0.1375 |
| 240 | 1st | 3rd | H2 | 99 | 0.0230 | 0.0237 | 0.0248 | 0.0264 | 0.0338 | 0.0393 | 0.0318 | 0.0397 | 0.0516 | 0.0619 | 0.3257 |
| 240 | 1st | 3rd | H3 | 98 | 0.0240 | 0.0252 | 0.0258 | 0.0271 | 0.0316 | 0.0419 | 0.0728 | 0.0372 | 0.0561 | 0.0612 | 0.7479 |
| 240 | 2nd | 3rd | H1 | 99 | 0.0238 | 0.0245 | 0.0249 | 0.0255 | 0.0278 | 0.0276 | 0.0020 | 0.0293 | 0.0299 | 0.0302 | 0.0332 |
| 240 | 2nd | 3rd | H2 | 99 | 0.0201 | 0.0205 | 0.0207 | 0.0212 | 0.0229 | 0.0238 | 0.0030 | 0.0262 | 0.0281 | 0.0285 | 0.0323 |
| 240 | 2nd | 3rd | H3 | 99 | 0.0221 | 0.0226 | 0.0230 | 0.0244 | 0.0273 | 0.0266 | 0.0024 | 0.0287 | 0.0291 | 0.0295 | 0.0309 |
| 240 | Last | 3rd | H1 | 100 | 0.0235 | 0.0249 | 0.0252 | 0.0261 | 0.0276 | 0.0283 | 0.0026 | 0.0308 | 0.0321 | 0.0327 | 0.0343 |
| 240 | Last | 3rd | H2 | 100 | 0.0259 | 0.0270 | 0.0277 | 0.0293 | 0.0316 | 0.0378 | 0.0695 | 0.0325 | 0.0331 | 0.0341 | 0.7250 |
| 240 | Last | 3rd | H3 | 99 | 0.0260 | 0.0266 | 0.0270 | 0.0280 | 0.0299 | 0.0298 | 0.0021 | 0.0313 | 0.0324 | 0.0337 | 0.0352 |
| 182 | 1st | 3rd | H1 | 15 | 0.0426 | 0.0426 | 0.0469 | 0.0577 | 0.0800 | 0.0862 | 0.0441 | 0.1014 | 0.1474 | 0.2076 | 0.2076 |
| 182 | 1st | 3rd | H2 | 15 | 0.0395 | 0.0395 | 0.0403 | 0.0410 | 0.0518 | 0.0706 | 0.0424 | 0.0786 | 0.1425 | 0.1841 | 0.1841 |
| 182 | 1st | 3rd | H3 | 15 | 0.0300 | 0.0300 | 0.0373 | 0.0416 | 0.0503 | 0.0744 | 0.0437 | 0.1150 | 0.1207 | 0.1811 | 0.1811 |
| 182 | 2nd | 3rd | H1 | 15 | 0.0355 | 0.0355 | 0.0366 | 0.0420 | 0.0462 | 0.0456 | 0.0068 | 0.0489 | 0.0558 | 0.0614 | 0.0614 |
| 182 | 2nd | 3rd | H2 | 15 | 0.0312 | 0.0312 | 0.0312 | 0.0332 | 0.0362 | 0.0375 | 0.0069 | 0.0395 | 0.0421 | 0.0590 | 0.0590 |
| 182 | 2nd | 3rd | H3 | 15 | 0.0314 | 0.0314 | 0.0358 | 0.0427 | 0.0470 | 0.0611 | 0.0365 | 0.0562 | 0.1165 | 0.1644 | 0.1644 |
| 182 | Last | 3rd | H1 | 16 | 0.0365 | 0.0365 | 0.0396 | 0.0423 | 0.0425 | 0.0424 | 0.0021 | 0.0429 | 0.0449 | 0.0458 | 0.0458 |
| 182 | Last | 3rd | H2 | 16 | 0.0292 | 0.0292 | 0.0300 | 0.0310 | 0.0320 | 0.0324 | 0.0021 | 0.0334 | 0.0354 | 0.0369 | 0.0369 |
| 182 | Last | 3rd | H3 | 16 | 0.0461 | 0.0461 | 0.0503 | 0.0516 | 0.0521 | 0.0539 | 0.0047 | 0.0564 | 0.0588 | 0.0669 | 0.0669 |
| 177 | 1st | 3rd | H1 | 9 | 0.0514 | 0.0514 | 0.0514 | 0.0667 | 0.0730 | 0.2633 | 0.2837 | 0.5541 | 0.7395 | 0.7395 | 0.7395 |
| 177 | 1st | 3rd | H2 | 8 | 0.0352 | 0.0352 | 0.0352 | 0.0453 | 0.0546 | 0.0710 | 0.0565 | 0.0620 | 0.2089 | 0.2089 | 0.2089 |
| 177 | 1st | 3rd | H3 | 6 | 0.0820 | 0.0820 | 0.0820 | 0.1394 | 0.1661 | 0.2158 | 0.1247 | 0.3477 | 0.3933 | 0.3933 | 0.3933 |
| 177 | 2nd | 3rd | H1 | 9 | 0.0445 | 0.0445 | 0.0445 | 0.0532 | 0.0881 | 0.0899 | 0.0416 | 0.1184 | 0.1513 | 0.1513 | 0.1513 |
| 177 | 2nd | 3rd | H2 | 9 | 0.0343 | 0.0343 | 0.0343 | 0.0416 | 0.0929 | 0.0757 | 0.0364 | 0.1057 | 0.1188 | 0.1188 | 0.1188 |
| 177 | 2nd | 3rd | H3 | 7 | 0.0556 | 0.0556 | 0.0556 | 0.0643 | 0.1296 | 0.1867 | 0.1302 | 0.3597 | 0.3623 | 0.3623 | 0.3623 |
| 177 | Last | 3rd | H1 | 10 | 0.0350 | 0.0350 | 0.0394 | 0.0788 | 0.1218 | 0.1323 | 0.0725 | 0.2235 | 0.2270 | 0.2301 | 0.2301 |
| 177 | Last | 3rd | H2 | 9 | 0.0495 | 0.0495 | 0.0495 | 0.0752 | 0.1116 | 0.1385 | 0.0771 | 0.2326 | 0.2399 | 0.2399 | 0.2399 |
| 177 | Last | 3rd | H3 | 8 | 0.1319 | 0.1319 | 0.1319 | 0.1739 | 0.2827 | 0.3019 | 0.1467 | 0.4330 | 0.5046 | 0.5046 | 0.5046 |
| 174 | 1st | 3rd | H1 | 17 | 0.0484 | 0.0484 | 0.0499 | 0.0607 | 0.0716 | 0.1357 | 0.1742 | 0.1321 | 0.3375 | 0.7540 | 0.7540 |
| 174 | 1st | 3rd | H2 | 17 | 0.0311 | 0.0311 | 0.0432 | 0.0498 | 0.0508 | 0.0640 | 0.0337 | 0.0662 | 0.0927 | 0.1792 | 0.1792 |
| 174 | 1st | 3rd | H3 | 16 | 0.0377 | 0.0377 | 0.0572 | 0.0613 | 0.1037 | 0.2052 | 0.2034 | 0.2998 | 0.5615 | 0.6599 | 0.6599 |

Table B.4. (continued)

| Pile ID |  |  | Hydrophone | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Impacts } \end{aligned}$ | $95{ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 174 | 2nd | 3rd |  | H1 | 18 | 0.0645 | 0.0645 | 0.1331 | 0.1435 | 0.1544 | 0.1622 | 0.0475 | 0.1674 | 0.2146 | 0.3041 | 0.3041 |
| 174 | 2nd | 3rd | H2 | 18 | 0.0359 | 0.0359 | 0.0520 | 0.0764 | 0.1383 | 0.1173 | 0.0465 | 0.1451 | 0.1525 | 0.2155 | 0.2155 |
| 174 | 2nd | 3rd | H3 | 17 | 0.1485 | 0.1485 | 0.1562 | 0.2481 | 0.4642 | 0.4623 | 0.2198 | 0.6901 | 0.7491 | 0.7527 | 0.7527 |
| 174 | Last | 3rd | H1 | 19 | 0.0432 | 0.0432 | 0.0462 | 0.0538 | 0.0592 | 0.0756 | 0.0354 | 0.0949 | 0.1361 | 0.1641 | 0.1641 |
| 174 | Last | 3rd | H2 | 18 | 0.0257 | 0.0257 | 0.0280 | 0.0305 | 0.0320 | 0.0437 | 0.0304 | 0.0373 | 0.1164 | 0.1340 | 0.1340 |
| 174 | Last | 3rd | H3 | 17 | 0.1473 | 0.1473 | 0.1479 | 0.1501 | 0.1652 | 0.2722 | 0.1737 | 0.4131 | 0.5887 | 0.6332 | 0.6332 |
| 181 | 1st | 3rd | H1 | 16 | 0.0381 | 0.0381 | 0.0447 | 0.0508 | 0.0596 | 0.1063 | 0.1353 | 0.0823 | 0.1961 | 0.5882 | 0.5882 |
| 181 | 1st | 3rd | H2 | 15 | 0.0403 | 0.0403 | 0.0438 | 0.0516 | 0.0570 | 0.0734 | 0.0436 | 0.0661 | 0.1534 | 0.1948 | 0.1948 |
| 181 | 1st | 3rd | H3 | 14 | 0.0544 | 0.0544 | 0.0581 | 0.0650 | 0.0829 | 0.1208 | 0.1093 | 0.1442 | 0.1541 | 0.4803 | 0.4803 |
| 181 | 2nd | 3rd | H1 | 16 | 0.0510 | 0.0510 | 0.0535 | 0.0669 | 0.1064 | 0.0998 | 0.0373 | 0.1246 | 0.1328 | 0.1825 | 0.1825 |
| 181 | 2nd | 3rd | H2 | 16 | 0.0596 | 0.0596 | 0.0614 | 0.0690 | 0.1163 | 0.0994 | 0.0303 | 0.1266 | 0.1308 | 0.1314 | 0.1314 |
| 181 | 2nd | 3rd | H3 | 15 | 0.1269 | 0.1269 | 0.1282 | 0.1296 | 0.1351 | 0.1549 | 0.0327 | 0.1935 | 0.2036 | 0.2126 | 0.2126 |
| 181 | Last | 3rd | H1 | 17 | 0.0301 | 0.0301 | 0.0305 | 0.0312 | 0.0314 | 0.0372 | 0.0079 | 0.0431 | 0.0491 | 0.0501 | 0.0501 |
| 181 | Last | 3rd | H2 | 16 | 0.0301 | 0.0301 | 0.0311 | 0.0341 | 0.0401 | 0.0439 | 0.0165 | 0.0501 | 0.0530 | 0.0987 | 0.0987 |
| 181 | Last | 3rd | H3 | 16 | 0.0617 | 0.0617 | 0.0625 | 0.0715 | 0.0837 | 0.0960 | 0.0314 | 0.1354 | 0.1390 | 0.1448 | 0.1448 |
| 167 | 1st | 3rd | H1 | 33 | 0.0333 | 0.0344 | 0.0408 | 0.0563 | 0.1377 | 0.1165 | 0.0571 | 0.1507 | 0.1801 | 0.1980 | 0.2707 |
| 167 | 1st | 3rd | H2 | 32 | 0.0341 | 0.0358 | 0.0404 | 0.0550 | 0.1825 | 0.1572 | 0.1021 | 0.2203 | 0.3039 | 0.3119 | 0.3375 |
| 167 | 1st | 3rd | H3 | 21 | 0.0278 | 0.0350 | 0.0352 | 0.0384 | 0.0436 | 0.1430 | 0.2153 | 0.0830 | 0.5656 | 0.6351 | 0.7025 |
| 167 | 2nd | 3rd | H1 | 34 | 0.0329 | 0.0335 | 0.0399 | 0.0752 | 0.0806 | 0.0771 | 0.0199 | 0.0856 | 0.1003 | 0.1072 | 0.1115 |
| 167 | 2nd | 3rd | H2 | 33 | 0.0410 | 0.0412 | 0.0505 | 0.0745 | 0.1344 | 0.1288 | 0.0601 | 0.1771 | 0.2092 | 0.2116 | 0.2242 |
| 167 | 2nd | 3rd | H3 | 22 | 0.0324 | 0.0341 | 0.0343 | 0.0360 | 0.0370 | 0.0465 | 0.0237 | 0.0475 | 0.0714 | 0.0792 | 0.1382 |
| 167 | Last | 3rd | H1 | 35 | 0.0228 | 0.0247 | 0.0262 | 0.0334 | 0.0385 | 0.0414 | 0.0129 | 0.0491 | 0.0585 | 0.0685 | 0.0723 |
| 167 | Last | 3rd | H2 | 34 | 0.0402 | 0.0417 | 0.0494 | 0.0567 | 0.0812 | 0.0847 | 0.0334 | 0.1075 | 0.1253 | 0.1543 | 0.1745 |
| 167 | Last | 3rd | H3 | 23 | 0.0304 | 0.0304 | 0.0326 | 0.0336 | 0.0376 | 0.0397 | 0.0127 | 0.0402 | 0.0425 | 0.0513 | 0.0941 |
| 178 | 1st | 3rd | H1 | 17 | 0.0559 | 0.0559 | 0.0585 | 0.1303 | 0.1861 | 0.2683 | 0.2391 | 0.2563 | 0.7227 | 0.7436 | 0.7436 |
| 178 | 1st | 3rd | H2 | 17 | 0.0294 | 0.0294 | 0.0317 | 0.0379 | 0.0464 | 0.0805 | 0.1125 | 0.0574 | 0.1428 | 0.5012 | 0.5012 |
| 178 | 1st | 3rd | H3 | 16 | 0.0461 | 0.0461 | 0.0472 | 0.0551 | 0.1280 | 0.1708 | 0.1623 | 0.1852 | 0.4325 | 0.6394 | 0.6394 |
| 178 | 2nd | 3rd | H1 | 18 | 0.0353 | 0.0353 | 0.0419 | 0.0510 | 0.0702 | 0.1111 | 0.0747 | 0.1686 | 0.2439 | 0.2483 | 0.2483 |
| 178 | 2nd | 3rd | H2 | 17 | 0.0216 | 0.0216 | 0.0217 | 0.0252 | 0.0267 | 0.0319 | 0.0167 | 0.0293 | 0.0439 | 0.0925 | 0.0925 |
| 178 | 2nd | 3rd | H3 | 17 | 0.0489 | 0.0489 | 0.0559 | 0.0565 | 0.0592 | 0.0779 | 0.0327 | 0.1020 | 0.1273 | 0.1603 | 0.1603 |

Table B.4. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | $95{ }^{\text {th }}$ Percentile Sound Duration of Strikes Within a Series (seconds) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | $\begin{gathered} \text { 50th } \\ \text { (Median) } \\ \hline \end{gathered}$ | Average | st dev | 75th | 90th | 95th | Maximum |
| 178 | Last | 3rd |  | H1 | 18 | 0.0369 | 0.0369 | 0.0408 | 0.0460 | 0.0685 | 0.0907 | 0.0488 | 0.1499 | 0.1579 | 0.1580 | 0.1580 |
| 178 | Last | 3rd | H2 | 18 | 0.0181 | 0.0181 | 0.0185 | 0.0196 | 0.0222 | 0.0226 | 0.0034 | 0.0255 | 0.0266 | 0.0296 | 0.0296 |
| 178 | Last | 3rd | H3 | 17 | 0.0571 | 0.0571 | 0.0572 | 0.0586 | 0.0657 | 0.0772 | 0.0252 | 0.0906 | 0.1200 | 0.1357 | 0.1357 |
| 244 | 1st | 3rd | H1 | 17 | 0.0421 | 0.0421 | 0.0477 | 0.0488 | 0.0607 | 0.1825 | 0.2300 | 0.1810 | 0.6242 | 0.7499 | 0.7499 |
| 244 | 1st | 3rd | H2 | 16 | 0.0331 | 0.0331 | 0.0342 | 0.0429 | 0.0516 | 0.1032 | 0.1781 | 0.0678 | 0.1817 | 0.7580 | 0.7580 |
| 244 | 1st | 3rd | H3 | 16 | 0.0354 | 0.0354 | 0.0365 | 0.0435 | 0.0549 | 0.0623 | 0.0336 | 0.0657 | 0.0782 | 0.1781 | 0.1781 |
| 244 | 2nd | 3rd | H1 | 18 | 0.0321 | 0.0321 | 0.0332 | 0.0399 | 0.0413 | 0.0893 | 0.0868 | 0.1461 | 0.1629 | 0.3727 | 0.3727 |
| 244 | 2nd | 3rd | H2 | 17 | 0.0329 | 0.0329 | 0.0330 | 0.0350 | 0.0395 | 0.0850 | 0.1325 | 0.0597 | 0.1541 | 0.5805 | 0.5805 |
| 244 | 2nd | 3rd | H3 | 16 | 0.0309 | 0.0309 | 0.0326 | 0.0336 | 0.0403 | 0.0564 | 0.0390 | 0.0514 | 0.1289 | 0.1594 | 0.1594 |
| 244 | Last | 3rd | H1 | 19 | 0.0225 | 0.0225 | 0.0265 | 0.0298 | 0.0320 | 0.0335 | 0.0087 | 0.0350 | 0.0397 | 0.0657 | 0.0657 |
| 244 | Last | 3rd | H2 | 18 | 0.0216 | 0.0216 | 0.0251 | 0.0268 | 0.0291 | 0.0404 | 0.0375 | 0.0373 | 0.0481 | 0.1876 | 0.1876 |
| 244 | Last | 3rd | H3 | 17 | 0.0290 | 0.0290 | 0.0299 | 0.0305 | 0.0319 | 0.0334 | 0.0038 | 0.0383 | 0.0386 | 0.0401 | 0.0401 |

Table B.5. Distribution Statistics for the Average Sound Pressure Level Measured During the 95th Percentile Pulse Duration in Each Strike in a Series on the Indicated Pile

| Pile ID | Impact <br> Time <br> Series |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 121N | 1st | 3rd |  | H1 | 98 | 491 | 829 | 1045 | 1248 | 1462 | 1574 | 463 | 1912 | 2198 | 2402 | 2707 |
| 121 N | 1st | 3rd | H2 | 98 | 828 | 994 | 1072 | 1131 | 1233 | 1277 | 215 | 1381 | 1659 | 1720 | 1816 |
| 121 N | 1st | 3rd | H3 | 97 | 315 | 429 | 456 | 533 | 624 | 636 | 132 | 754 | 795 | 835 | 893 |
| 121N | 2nd | 3rd | H1 | 99 | 437 | 561 | 636 | 757 | 818 | 865 | 205 | 1011 | 1173 | 1231 | 1370 |
| 121N | 2nd | 3rd | H2 | 99 | 329 | 409 | 443 | 473 | 522 | 590 | 173 | 656 | 891 | 968 | 1100 |
| 121N | 2nd | 3rd | H3 | 98 | 154 | 162 | 167 | 179 | 209 | 259 | 101 | 344 | 410 | 476 | 510 |
| 121N | Last | 3rd | H1 | 99 | 32 | 634 | 782 | 1297 | 1399 | 1370 | 351 | 1603 | 1759 | 1809 | 1973 |
| 121N | Last | 3rd | H2 | 99 | 17 | 482 | 522 | 983 | 1038 | 997 | 239 | 1132 | 1222 | 1267 | 1365 |
| 121 N | Last | 3rd | H3 | 99 | 15 | 180 | 186 | 495 | 563 | 522 | 159 | 629 | 673 | 689 | 742 |
| 52N | 1st | 3rd | H1 | 35 | 484 | 718 | 1080 | 1266 | 1399 | 1341 | 245 | 1503 | 1575 | 1639 | 1679 |
| 52N | 1st | 3rd | H2 | 35 | 663 | 667 | 959 | 1099 | 1224 | 1218 | 229 | 1390 | 1504 | 1566 | 1645 |
| 52N | 1st | 3rd | H3 | 35 | 272 | 405 | 571 | 650 | 793 | 747 | 150 | 852 | 890 | 904 | 935 |
| 52N | 2nd | 3rd | H1 | 36 | 1136 | 1266 | 1360 | 1392 | 1546 | 1556 | 190 | 1668 | 1833 | 1909 | 1962 |
| 52N | 2nd | 3rd | H2 | 36 | 1073 | 1268 | 1339 | 1491 | 1722 | 1877 | 458 | 2379 | 2476 | 2502 | 2682 |
| 52N | 2nd | 3rd | H3 | 36 | 641 | 648 | 703 | 744 | 791 | 790 | 77 | 826 | 902 | 912 | 984 |
| 52N | Last | 3rd | H1 | 36 | 209 | 290 | 443 | 1433 | 1560 | 1434 | 449 | 1696 | 1782 | 1903 | 2072 |
| 52N | Last | 3rd | H2 | 36 | 468 | 523 | 1140 | 2037 | 2328 | 2206 | 636 | 2593 | 2852 | 3027 | 3259 |
| 52N | Last | 3rd | H3 | 36 | 128 | 151 | 229 | 780 | 840 | 742 | 233 | 866 | 878 | 896 | 969 |
| 118N | 1st | 3rd | H1 | 67 | 344 | 1063 | 1223 | 1324 | 1527 | 1507 | 263 | 1666 | 1767 | 1932 | 2053 |
| 118N | 1st | 3rd | H2 | 67 | 227 | 379 | 408 | 563 | 710 | 665 | 165 | 779 | 850 | 869 | 943 |
| 118N | 1st | 3rd | H3 | 66 | 30 | 162 | 174 | 187 | 203 | 208 | 47 | 222 | 250 | 290 | 390 |
| 118N | 2nd | 3rd | H1 | 68 | 818 | 880 | 904 | 1030 | 1127 | 1132 | 154 | 1216 | 1354 | 1407 | 1496 |
| 118N | 2nd | 3rd | H2 | 67 | 645 | 653 | 668 | 717 | 756 | 757 | 61 | 802 | 845 | 856 | 890 |
| 118N | 2nd | 3rd | H3 | 67 | 199 | 208 | 215 | 233 | 250 | 261 | 41 | 287 | 308 | 353 | 385 |
| 118N | Last | 3rd | H1 | 68 | 33 | 737 | 908 | 1036 | 1140 | 1108 | 244 | 1240 | 1306 | 1352 | 1792 |
| 118N | Last | 3rd | H2 | 68 | 214 | 694 | 710 | 742 | 772 | 762 | 111 | 803 | 833 | 848 | 1046 |
| 118N | Last | 3rd | H3 | 67 | 155 | 238 | 247 | 267 | 284 | 287 | 34 | 307 | 334 | 337 | 366 |

Table B.5. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 255 | 1st | 3rd |  | H1 | 77 | 1280 | 1344 | 1430 | 1617 | 1839 | 1799 | 242 | 2003 | 2068 | 2146 | 2226 |
| 255 | 1st | 3rd | H2 | 77 | 1196 | 1276 | 1340 | 1500 | 1565 | 1557 | 138 | 1669 | 1709 | 1741 | 1843 |
| 255 | 1st | 3rd | H3 | 77 | 40 | 104 | 120 | 223 | 353 | 404 | 456 | 405 | 509 | 1172 | 3327 |
| 255 | 2nd | 3rd | H1 | 78 | 1045 | 1105 | 1145 | 1336 | 1624 | 1559 | 254 | 1768 | 1815 | 1833 | 1859 |
| 255 | 2nd | 3rd | H2 | 78 | 814 | 840 | 884 | 1071 | 1299 | 1242 | 229 | 1442 | 1497 | 1520 | 1662 |
| 255 | 2nd | 3rd | H3 | 78 | 47 | 57 | 75 | 141 | 201 | 254 | 344 | 258 | 341 | 661 | 2875 |
| 255 | Last | 3rd | H1 | 79 | 256 | 797 | 829 | 903 | 975 | 963 | 129 | 1038 | 1097 | 1137 | 1170 |
| 255 | Last | 3rd | H2 | 79 | 217 | 715 | 730 | 754 | 823 | 858 | 147 | 985 | 1072 | 1114 | 1158 |
| 255 | Last | 3rd | H3 | 79 | 58 | 68 | 74 | 113 | 192 | 196 | 91 | 280 | 331 | 358 | 360 |
| 249 | 1st | 3rd | H1 | 168 | 233 | 566 | 895 | 1229 | 1378 | 1324 | 317 | 1529 | 1647 | 1719 | 1957 |
| 249 | 1st | 3rd | H2 | 168 | 169 | 682 | 913 | 1127 | 1384 | 1416 | 445 | 1721 | 2017 | 2207 | 2470 |
| 249 | 1st | 3rd | H3 | 168 | 38 | 61 | 69 | 83 | 120 | 170 | 110 | 260 | 352 | 380 | 449 |
| 249 | 2nd | 3rd | H1 | 168 | 179 | 1072 | 1100 | 1174 | 1233 | 1299 | 240 | 1359 | 1690 | 1847 | 1966 |
| 249 | 2nd | 3rd | H2 | 168 | 91 | 1049 | 1092 | 1179 | 1273 | 1299 | 216 | 1444 | 1561 | 1652 | 1750 |
| 249 | 2nd | 3rd | H3 | 168 | 79 | 91 | 108 | 199 | 377 | 323 | 137 | 435 | 471 | 492 | 550 |
| 249 | Last | 3rd | H1 | 170 | 349 | 967 | 1001 | 1084 | 1222 | 1285 | 260 | 1468 | 1683 | 1716 | 1964 |
| 249 | Last | 3rd | H2 | 170 | 249 | 1147 | 1208 | 1297 | 1367 | 1362 | 150 | 1436 | 1522 | 1560 | 1705 |
| 249 | Last | 3rd | H3 | 169 | 59 | 85 | 97 | 143 | 337 | 295 | 139 | 418 | 445 | 465 | 515 |
| 252 | 1st | 3rd | H1 | 85 | 85 | 594 | 617 | 896 | 1215 | 1150 | 349 | 1381 | 1542 | 1666 | 1769 |
| 252 | 1st | 3rd | H2 | 85 | 85 | 594 | 617 | 896 | 1215 | 1150 | 349 | 1381 | 1542 | 1666 | 1769 |
| 252 | 1st | 3rd | H3 | 84 | 55 | 488 | 596 | 862 | 1034 | 973 | 243 | 1135 | 1222 | 1243 | 1492 |
| 252 | 2nd | 3rd | H1 | 85 | 18 | 43 | 46 | 56 | 92 | 116 | 74 | 155 | 217 | 284 | 344 |
| 252 | 2nd | 3rd | H2 | 85 | 1231 | 1306 | 1349 | 1716 | 2243 | 2195 | 601 | 2699 | 3097 | 3151 | 3287 |
| 252 | 2nd | 3rd | H3 | 84 | 1231 | 1306 | 1349 | 1716 | 2243 | 2195 | 601 | 2699 | 3097 | 3151 | 3287 |
| 252 | Last | 3rd | H1 | 86 | 772 | 831 | 852 | 917 | 1043 | 1127 | 285 | 1249 | 1569 | 1836 | 1955 |
| 252 | Last | 3rd | H2 | 86 | 48 | 55 | 59 | 77 | 116 | 144 | 88 | 183 | 287 | 352 | 389 |
| 252 | Last | 3rd | H3 | 85 | 1377 | 2619 | 2726 | 2893 | 2951 | 2934 | 221 | 3047 | 3123 | 3145 | 3313 |
| 172 | 1st | 3rd | H1 | 64 | 1377 | 2619 | 2726 | 2893 | 2951 | 2934 | 221 | 3047 | 3123 | 3145 | 3313 |
| 172 | 1st | 3rd | H2 | 64 | 766 | 1736 | 1751 | 1827 | 1910 | 1907 | 175 | 2014 | 2086 | 2101 | 2177 |
| 172 | 1st | 3rd | H3 | 62 | 61 | 90 | 105 | 183 | 236 | 258 | 117 | 343 | 441 | 468 | 514 |

Table B.5. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 172 | 2nd | 3rd |  | H1 | 65 | 29 | 60 | 217 | 402 | 910 | 958 | 656 | 1375 | 1856 | 2264 | 2513 |
| 172 | 2nd | 3rd | H2 | 65 | 41 | 108 | 541 | 892 | 1654 | 1486 | 752 | 2096 | 2383 | 2499 | 2878 |
| 172 | 2nd | 3rd | H3 | 63 | 24 | 67 | 87 | 279 | 572 | 469 | 244 | 656 | 741 | 768 | 800 |
| 172 | Last | 3rd | H1 | 65 | 2513 | 2829 | 3061 | 3616 | 4537 | 4233 | 722 | 4782 | 4895 | 4934 | 5059 |
| 172 | Last | 3rd | H2 | 65 | 2584 | 2862 | 3159 | 4589 | 4821 | 4538 | 740 | 5002 | 5128 | 5228 | 5265 |
| 172 | Last | 3rd | H3 | 63 | 611 | 621 | 625 | 695 | 734 | 722 | 55 | 762 | 783 | 789 | 849 |
| 171 | 1st | 3rd | H1 | 134 | 2989 | 4085 | 4158 | 4240 | 4378 | 4390 | 273 | 4582 | 4648 | 4756 | 5010 |
| 171 | 1st | 3rd | H2 | 134 | 3285 | 4348 | 4400 | 4550 | 5562 | 5687 | 1263 | 6964 | 7285 | 7633 | 8376 |
| 171 | 1st | 3rd | H3 | 132 | 306 | 568 | 570 | 585 | 616 | 640 | 88 | 682 | 775 | 821 | 835 |
| 171 | 2nd | 3rd | H1 | 135 | 170 | 433 | 574 | 896 | 1420 | 1354 | 559 | 1890 | 1996 | 2125 | 2344 |
| 171 | 2nd | 3rd | H2 | 135 | 139 | 392 | 444 | 1054 | 1655 | 1698 | 858 | 2500 | 2638 | 2665 | 2920 |
| 171 | 2nd | 3rd | H3 | 132 | 99 | 133 | 186 | 484 | 653 | 598 | 240 | 761 | 895 | 928 | 977 |
| 171 | Last | 3rd | H1 | 136 | 209 | 964 | 1102 | 1188 | 1682 | 1578 | 408 | 1936 | 1984 | 2073 | 2308 |
| 171 | Last | 3rd | H2 | 136 | 197 | 2051 | 2176 | 2391 | 2632 | 2609 | 395 | 2918 | 3084 | 3115 | 3281 |
| 171 | Last | 3rd | H3 | 133 | 479 | 561 | 586 | 611 | 638 | 651 | 74 | 679 | 720 | 741 | 1159 |
| 238 | 1st | 3rd | H1 | 72 | 182 | 1665 | 1750 | 1987 | 2158 | 2192 | 456 | 2383 | 2759 | 3032 | 3635 |
| 238 | 1st | 3rd | H2 | 71 | 148 | 1834 | 2144 | 2301 | 2454 | 2533 | 543 | 2779 | 3168 | 3407 | 4653 |
| 238 | 1st | 3rd | H3 | 67 | 114 | 578 | 599 | 654 | 1054 | 974 | 311 | 1237 | 1327 | 1365 | 1648 |
| 238 | 2nd | 3rd | H1 | 73 | 55 | 87 | 187 | 438 | 530 | 595 | 364 | 672 | 1277 | 1505 | 1630 |
| 238 | 2nd | 3rd | H2 | 72 | 24 | 63 | 80 | 189 | 417 | 658 | 607 | 943 | 1733 | 1948 | 2027 |
| 238 | 2nd | 3rd | H3 | 68 | 25 | 42 | 58 | 102 | 370 | 441 | 370 | 741 | 1060 | 1101 | 1163 |
| 238 | Last | 3rd | H1 | 73 | 556 | 772 | 821 | 1118 | 1441 | 1450 | 433 | 1863 | 1996 | 2077 | 2203 |
| 238 | Last | 3rd | H2 | 73 | 1189 | 1241 | 1467 | 1753 | 1888 | 1876 | 301 | 2090 | 2238 | 2340 | 2411 |
| 238 | Last | 3rd | H3 | 69 | 596 | 678 | 737 | 800 | 849 | 905 | 157 | 1077 | 1128 | 1136 | 1229 |
| 235 | 1st | 3rd | H1 | 85 | 1833 | 1996 | 2078 | 2174 | 2406 | 2421 | 281 | 2656 | 2822 | 2841 | 2887 |
| 235 | 1st | 3rd | H2 | 85 | 1719 | 1832 | 1890 | 1966 | 2049 | 2080 | 180 | 2156 | 2314 | 2485 | 2594 |
| 235 | 1st | 3rd | H3 | 85 | 550 | 636 | 654 | 670 | 696 | 702 | 58 | 718 | 773 | 818 | 986 |
| 235 | 2nd | 3rd | H1 | 86 | 207 | 716 | 867 | 1149 | 1301 | 1271 | 326 | 1470 | 1622 | 1710 | 2048 |
| 235 | 2nd | 3rd | H2 | 86 | 134 | 574 | 756 | 946 | 1108 | 1080 | 310 | 1225 | 1357 | 1440 | 1950 |
| 235 | 2nd | 3rd | H3 | 86 | 35 | 286 | 338 | 633 | 842 | 927 | 424 | 1340 | 1393 | 1441 | 1638 |

Table B.5. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 235 | Last | 3rd |  | H1 | 86 | 915 | 1380 | 1455 | 1643 | 1957 | 1929 | 376 | 2185 | 2386 | 2538 | 2893 |
| 235 | Last | 3rd | H2 | 86 | 1190 | 1571 | 1627 | 1704 | 1846 | 1885 | 231 | 2042 | 2186 | 2260 | 2356 |
| 235 | Last | 3rd | H3 | 86 | 733 | 869 | 935 | 1018 | 1162 | 1139 | 160 | 1260 | 1349 | 1388 | 1449 |
| 237 | 1st | 3rd | H1 | 122 | 831 | 1053 | 1112 | 1196 | 1247 | 1454 | 477 | 1436 | 2438 | 2521 | 2945 |
| 237 | 1st | 3rd | H2 | 122 | 775 | 926 | 984 | 1082 | 1196 | 1246 | 261 | 1369 | 1634 | 1742 | 2071 |
| 237 | 1st | 3rd | H3 | 121 | 432 | 817 | 836 | 873 | 916 | 918 | 86 | 971 | 1024 | 1035 | 1061 |
| 237 | 2nd | 3rd | H1 | 123 | 159 | 486 | 707 | 1533 | 1781 | 1696 | 523 | 2086 | 2267 | 2333 | 2440 |
| 237 | 2nd | 3rd | H2 | 123 | 53 | 409 | 689 | 1045 | 1138 | 1118 | 329 | 1307 | 1462 | 1564 | 1886 |
| 237 | 2nd | 3rd | H3 | 122 | 27 | 55 | 102 | 373 | 733 | 608 | 299 | 833 | 910 | 1001 | 1112 |
| 237 | Last | 3rd | H1 | 123 | 959 | 1044 | 1077 | 1225 | 1380 | 1357 | 200 | 1463 | 1593 | 1678 | 2005 |
| 237 | Last | 3rd | H2 | 123 | 991 | 1128 | 1222 | 1275 | 1431 | 1487 | 305 | 1553 | 2017 | 2143 | 2294 |
| 237 | Last | 3rd | H3 | 123 | 684 | 750 | 778 | 811 | 855 | 893 | 129 | 932 | 1096 | 1143 | 1373 |
| 50N | 1st | 3rd | H1 | 111 | 351 | 1416 | 1439 | 1498 | 1608 | 1591 | 165 | 1684 | 1760 | 1786 | 1939 |
| 50N | 1st | 3rd | H2 | 111 | 422 | 1200 | 1212 | 1257 | 1343 | 1346 | 138 | 1439 | 1500 | 1543 | 1594 |
| 50N | 1st | 3rd | H3 | 111 | 235 | 960 | 978 | 1050 | 1182 | 1241 | 274 | 1367 | 1714 | 1739 | 1825 |
| 50N | 2nd | 3rd | H1 | 111 | 163 | 564 | 921 | 1256 | 1369 | 1345 | 341 | 1574 | 1695 | 1805 | 1960 |
| 50N | 2nd | 3rd | H2 | 111 | 136 | 480 | 945 | 1222 | 1419 | 1348 | 342 | 1552 | 1673 | 1749 | 1903 |
| 50N | 2nd | 3rd | H3 | 112 | 35 | 703 | 1490 | 1797 | 2105 | 2036 | 578 | 2492 | 2652 | 2739 | 2933 |
| 50N | Last | 3rd | H1 | 112 | 1083 | 1164 | 1181 | 1207 | 1282 | 1306 | 115 | 1397 | 1471 | 1510 | 1585 |
| 50N | Last | 3rd | H2 | 112 | 1156 | 1220 | 1277 | 1365 | 1456 | 1445 | 116 | 1530 | 1585 | 1628 | 1695 |
| 50N | Last | 3rd | H3 | 112 | 1286 | 1381 | 1447 | 1608 | 1747 | 1739 | 194 | 1897 | 1953 | 2044 | 2200 |
| 120N | 1st | 3rd | H1 | 50 | 19 | 255 | 1043 | 1096 | 1268 | 1155 | 298 | 1319 | 1350 | 1373 | 1486 |
| 120N | 1st | 3rd | H2 | 50 | 30 | 281 | 1028 | 1091 | 1246 | 1143 | 289 | 1305 | 1329 | 1343 | 1403 |
| 120N | 1st | 3rd | H3 | 50 | 64 | 462 | 1362 | 1556 | 1635 | 1572 | 382 | 1788 | 1859 | 1943 | 2009 |
| 120N | 2nd | 3rd | H1 | 51 | 373 | 813 | 963 | 1294 | 1814 | 1785 | 597 | 2393 | 2525 | 2597 | 2668 |
| 120N | 2nd | 3rd | H2 | 51 | 294 | 519 | 729 | 972 | 1358 | 1370 | 506 | 1863 | 1998 | 2195 | 2237 |
| 120N | 2nd | 3rd | H3 | 50 | 190 | 484 | 580 | 734 | 1007 | 980 | 314 | 1281 | 1375 | 1409 | 1499 |
| 120N | Last | 3rd | H1 | 51 | 2121 | 2221 | 2387 | 2524 | 2679 | 2651 | 224 | 2764 | 2916 | 2989 | 3171 |
| 120N | Last | 3rd | H2 | 51 | 1555 | 1621 | 1661 | 1709 | 1844 | 1861 | 171 | 2000 | 2076 | 2155 | 2198 |
| 120N | Last | 3rd | H3 | 51 | 1045 | 1091 | 1119 | 1183 | 1257 | 1266 | 111 | 1343 | 1439 | 1449 | 1459 |

Table B.5. (continued)

| Pile ID | Impact Time <br> Series |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 240 | 1st | 3rd |  | H1 | 98 | 258 | 957 | 2877 | 2932 | 3019 | 2878 | 656 | 3196 | 3273 | 3280 | 3369 |
| 240 | 1st | 3rd | H2 | 99 | 126 | 475 | 1515 | 1902 | 2061 | 1907 | 480 | 2122 | 2188 | 2251 | 2307 |
| 240 | 1st | 3rd | H3 | 98 | 295 | 513 | 1259 | 1348 | 1393 | 1324 | 250 | 1423 | 1450 | 1472 | 1533 |
| 240 | 2nd | 3rd | H1 | 99 | 77 | 584 | 799 | 1387 | 1754 | 1777 | 680 | 2216 | 2759 | 2924 | 3201 |
| 240 | 2nd | 3rd | H2 | 99 | 30 | 449 | 696 | 1207 | 1510 | 1609 | 716 | 1984 | 2735 | 2864 | 3009 |
| 240 | 2nd | 3rd | H3 | 99 | 21 | 310 | 457 | 786 | 944 | 946 | 338 | 1127 | 1407 | 1461 | 1528 |
| 240 | Last | 3rd | H1 | 100 | 1686 | 1761 | 1806 | 1865 | 2123 | 2197 | 368 | 2482 | 2771 | 2864 | 3016 |
| 240 | Last | 3rd | H2 | 100 | 1528 | 1629 | 1787 | 1982 | 2589 | 2488 | 539 | 2941 | 3150 | 3349 | 3546 |
| 240 | Last | 3rd | H3 | 99 | 1055 | 1101 | 1133 | 1185 | 1290 | 1334 | 181 | 1456 | 1611 | 1676 | 1708 |
| 182 | 1st | 3rd | H1 | 15 | 1526 | 1770 | 1821 | 1888 | 2057 | 2129 | 288 | 2379 | 2529 | 2590 | 2995 |
| 182 | 1st | 3rd | H2 | 15 | 29 | 1340 | 1395 | 1472 | 1556 | 1564 | 224 | 1680 | 1786 | 1859 | 2073 |
| 182 | 1st | 3rd | H3 | 15 | 483 | 975 | 991 | 1036 | 1098 | 1093 | 101 | 1153 | 1211 | 1240 | 1296 |
| 182 | 2nd | 3rd | H1 | 15 | 80 | 80 | 122 | 264 | 383 | 452 | 259 | 694 | 851 | 913 | 913 |
| 182 | 2nd | 3rd | H2 | 15 | 67 | 67 | 117 | 259 | 542 | 561 | 320 | 842 | 1014 | 1024 | 1024 |
| 182 | 2nd | 3rd | H3 | 15 | 59 | 59 | 59 | 136 | 345 | 327 | 205 | 506 | 576 | 725 | 725 |
| 182 | Last | 3rd | H1 | 16 | 577 | 577 | 735 | 954 | 1230 | 1129 | 250 | 1308 | 1359 | 1438 | 1438 |
| 182 | Last | 3rd | H2 | 16 | 579 | 579 | 893 | 1024 | 1353 | 1256 | 268 | 1469 | 1507 | 1508 | 1508 |
| 182 | Last | 3rd | H3 | 16 | 192 | 192 | 253 | 413 | 496 | 472 | 143 | 555 | 677 | 682 | 682 |
| 177 | 1st | 3rd | H1 | 9 | 1237 | 1237 | 1277 | 1403 | 1437 | 1442 | 104 | 1497 | 1584 | 1666 | 1666 |
| 177 | 1st | 3rd | H2 | 8 | 1368 | 1368 | 1405 | 1561 | 1620 | 1619 | 129 | 1677 | 1837 | 1858 | 1858 |
| 177 | 1st | 3rd | H3 | 6 | 388 | 388 | 431 | 452 | 493 | 482 | 41 | 507 | 540 | 542 | 542 |
| 177 | 2nd | 3rd | H1 | 9 | 17 | 17 | 17 | 27 | 384 | 286 | 213 | 439 | 575 | 575 | 575 |
| 177 | 2nd | 3rd | H2 | 9 | 28 | 28 | 28 | 382 | 483 | 505 | 272 | 708 | 863 | 863 | 863 |
| 177 | 2nd | 3rd | H3 | 7 | 56 | 56 | 56 | 62 | 108 | 110 | 49 | 151 | 174 | 174 | 174 |
| 177 | Last | 3rd | H1 | 10 | 92 | 92 | 92 | 151 | 274 | 420 | 355 | 685 | 971 | 971 | 971 |
| 177 | Last | 3rd | H2 | 9 | 100 | 100 | 100 | 138 | 168 | 360 | 323 | 456 | 985 | 985 | 985 |
| 177 | Last | 3rd | H3 | 8 | 30 | 30 | 30 | 36 | 81 | 136 | 121 | 269 | 327 | 327 | 327 |
| 174 | 1st | 3rd | H1 | 17 | 123 | 123 | 127 | 136 | 174 | 269 | 198 | 334 | 626 | 661 | 661 |
| 174 | 1st | 3rd | H2 | 17 | 96 | 96 | 96 | 105 | 173 | 184 | 91 | 214 | 385 | 385 | 385 |
| 174 | 1st | 3rd | H3 | 16 | 31 | 31 | 31 | 40 | 59 | 60 | 23 | 75 | 98 | 98 | 98 |

Table B.5. (continued)

| Pile ID |  |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \\ \hline \end{gathered}$ | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 174 | 2nd | 3rd |  | H1 | 18 | 16 | 16 | 61 | 347 | 445 | 464 | 253 | 557 | 784 | 951 | 951 |
| 174 | 2nd | 3rd | H2 | 18 | 93 | 93 | 330 | 507 | 647 | 645 | 280 | 747 | 834 | 1446 | 1446 |
| 174 | 2nd | 3rd | H3 | 17 | 41 | 41 | 43 | 92 | 200 | 195 | 135 | 256 | 319 | 557 | 557 |
| 174 | Last | 3rd | H1 | 19 | 97 | 97 | 100 | 152 | 167 | 173 | 66 | 183 | 227 | 402 | 402 |
| 174 | Last | 3rd | H2 | 18 | 83 | 83 | 131 | 180 | 215 | 273 | 164 | 323 | 495 | 731 | 731 |
| 174 | Last | 3rd | H3 | 17 | 29 | 29 | 31 | 39 | 51 | 52 | 21 | 60 | 73 | 115 | 115 |
| 181 | 1st | 3rd | H1 | 16 | 192 | 192 | 203 | 370 | 592 | 548 | 228 | 735 | 805 | 905 | 905 |
| 181 | 1st | 3rd | H2 | 15 | 117 | 117 | 271 | 827 | 946 | 876 | 298 | 1018 | 1213 | 1234 | 1234 |
| 181 | 1st | 3rd | H3 | 14 | 46 | 46 | 48 | 66 | 84 | 93 | 33 | 119 | 140 | 142 | 142 |
| 181 | 2nd | 3rd | H1 | 16 | 14 | 14 | 63 | 245 | 572 | 551 | 355 | 826 | 992 | 1237 | 1237 |
| 181 | 2nd | 3rd | H2 | 16 | 71 | 71 | 101 | 178 | 457 | 428 | 243 | 648 | 766 | 773 | 773 |
| 181 | 2nd | 3rd | H3 | 15 | 9 | 9 | 55 | 99 | 204 | 191 | 114 | 300 | 318 | 339 | 339 |
| 181 | Last | 3rd | H1 | 17 | 100 | 100 | 198 | 232 | 305 | 341 | 148 | 477 | 544 | 602 | 602 |
| 181 | Last | 3rd | H2 | 16 | 141 | 141 | 148 | 168 | 196 | 235 | 81 | 289 | 369 | 376 | 376 |
| 181 | Last | 3rd | H3 | 16 | 60 | 60 | 60 | 66 | 100 | 88 | 20 | 105 | 106 | 111 | 111 |
| 167 | 1st | 3rd | H1 | 33 | 370 | 370 | 641 | 837 | 1185 | 1052 | 313 | 1281 | 1379 | 1409 | 1409 |
| 167 | 1st | 3rd | H2 | 32 | 119 | 119 | 417 | 491 | 663 | 626 | 202 | 746 | 875 | 903 | 903 |
| 167 | 1st | 3rd | H3 | 21 | 108 | 108 | 108 | 136 | 212 | 204 | 68 | 266 | 284 | 298 | 298 |
| 167 | 2nd | 3rd | H1 | 34 | 58 | 157 | 189 | 224 | 463 | 849 | 823 | 1288 | 2261 | 2607 | 2695 |
| 167 | 2nd | 3rd | H2 | 33 | 49 | 52 | 54 | 86 | 199 | 450 | 463 | 779 | 1180 | 1447 | 1452 |
| 167 | 2nd | 3rd | H3 | 22 | 13 | 23 | 76 | 158 | 241 | 263 | 153 | 323 | 428 | 558 | 600 |
| 167 | Last | 3rd | H1 | 35 | 376 | 428 | 481 | 543 | 657 | 766 | 405 | 736 | 1464 | 1591 | 2295 |
| 167 | Last | 3rd | H2 | 34 | 85 | 97 | 103 | 125 | 169 | 251 | 179 | 290 | 504 | 653 | 817 |
| 167 | Last | 3rd | H3 | 23 | 42 | 85 | 106 | 185 | 217 | 198 | 61 | 236 | 252 | 268 | 291 |
| 178 | 1st | 3rd | H1 | 17 | 618 | 651 | 715 | 937 | 1325 | 1263 | 383 | 1576 | 1706 | 1948 | 1964 |
| 178 | 1st | 3rd | H2 | 17 | 125 | 141 | 182 | 206 | 292 | 311 | 122 | 427 | 473 | 548 | 548 |
| 178 | 1st | 3rd | H3 | 16 | 76 | 138 | 166 | 190 | 215 | 206 | 40 | 236 | 241 | 242 | 249 |
| 178 | 2nd | 3rd | H1 | 18 | 30 | 30 | 39 | 145 | 230 | 499 | 495 | 1024 | 1330 | 1407 | 1407 |
| 178 | 2nd | 3rd | H2 | 17 | 13 | 13 | 129 | 353 | 688 | 772 | 491 | 1071 | 1581 | 1641 | 1641 |
| 178 | 2nd | 3rd | H3 | 17 | 34 | 34 | 34 | 81 | 186 | 246 | 197 | 427 | 517 | 608 | 608 |

Table B.5. (continued)

| Pile ID |  |  | Hydrophone | Number of Impacts | Average Sound Pressure Level (Pa) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | 5th | 10th | 25th | 50th (Median) | Average | st dev | 75th | 90th | 95th | Maximum |
| 178 | Last | 3rd |  | H1 | 18 | 200 | 200 | 212 | 364 | 768 | 730 | 414 | 1131 | 1258 | 1423 | 1423 |
| 178 | Last | 3rd | H2 | 18 | 377 | 377 | 728 | 1532 | 1842 | 1612 | 563 | 1955 | 2180 | 2327 | 2327 |
| 178 | Last | 3rd | H3 | 17 | 135 | 135 | 156 | 225 | 404 | 350 | 114 | 436 | 458 | 470 | 470 |
| 244 | 1st | 3rd | H1 | 17 | 439 | 439 | 441 | 460 | 811 | 825 | 340 | 1149 | 1334 | 1420 | 1420 |
| 244 | 1st | 3rd | H2 | 16 | 1853 | 1853 | 1898 | 2064 | 2287 | 2274 | 244 | 2492 | 2562 | 2598 | 2598 |
| 244 | 1st | 3rd | H3 | 16 | 211 | 211 | 218 | 246 | 385 | 346 | 85 | 404 | 439 | 468 | 468 |
| 244 | 2nd | 3rd | H1 | 18 | 14 | 14 | 22 | 369 | 840 | 742 | 504 | 948 | 1469 | 1542 | 1542 |
| 244 | 2nd | 3rd | H2 | 17 | 34 | 34 | 324 | 537 | 598 | 713 | 401 | 860 | 1450 | 1639 | 1639 |
| 244 | 2nd | 3rd | H3 | 16 | 168 | 168 | 182 | 351 | 480 | 473 | 212 | 553 | 816 | 949 | 949 |
| 244 | Last | 3rd | H1 | 19 | 49 | 49 | 153 | 250 | 625 | 678 | 540 | 800 | 1811 | 2057 | 2057 |
| 244 | Last | 3rd | H2 | 18 | 42 | 42 | 131 | 433 | 596 | 563 | 343 | 676 | 869 | 1573 | 1573 |
| 244 | Last | 3rd | H3 | 17 | 76 | 76 | 119 | 279 | 315 | 346 | 208 | 378 | 553 | 990 | 990 |

Table B.6. Distribution Statistics for the Sound Exposure Level Integrated Over the 95th Percentile Pulse Duration of Each Strike in a Series on the Indicated Pile

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \\ \hline \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 121N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ |  | H1 | 98 | $3.00 \mathrm{E}+09$ | 7.51E+09 | 8.09E+09 | 9.70E+09 | $1.38 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ | 4.67E+09 | 1.83E+10 | $2.02 \mathrm{E}+10$ | $2.05 \mathrm{E}+10$ | $2.12 \mathrm{E}+10$ |
| 121N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 98 | $4.69 \mathrm{E}+09$ | 5.64E+09 | $6.38 \mathrm{E}+09$ | 6.87E+09 | 7.57E+09 | 7.84E+09 | $1.48 \mathrm{E}+09$ | 8.85E+09 | 9.63E+09 | 9.86E+09 | $1.48 \mathrm{E}+10$ |
| 121N | $1{ }^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 97 | $1.09 \mathrm{E}+09$ | $1.56 \mathrm{E}+09$ | 1.70E+09 | 1.84E+09 | $2.27 \mathrm{E}+09$ | $2.27 \mathrm{E}+09$ | 5.00E+08 | $2.72 \mathrm{E}+09$ | $2.94 \mathrm{E}+09$ | $3.11 \mathrm{E}+09$ | $3.29 \mathrm{E}+09$ |
| 121N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 99 | 4.23E+09 | 4.61E+09 | 4.81E+09 | 5.05E+09 | 5.55E+09 | $6.38 \mathrm{E}+09$ | $1.79 \mathrm{E}+09$ | 7.80E+09 | 9.46E+09 | $1.00 \mathrm{E}+10$ | $1.13 \mathrm{E}+10$ |
| 121N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 99 | $1.91 \mathrm{E}+09$ | $2.06 \mathrm{E}+09$ | $2.10 \mathrm{E}+09$ | $2.21 \mathrm{E}+09$ | $2.45 \mathrm{E}+09$ | 3.03E+09 | $1.21 \mathrm{E}+09$ | $3.34 \mathrm{E}+09$ | 5.42E+09 | 5.81E+09 | $6.64 \mathrm{E}+09$ |
| 121N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 98 | $4.49 \mathrm{E}+08$ | $4.88 \mathrm{E}+08$ | 5.09E+08 | $5.48 \mathrm{E}+08$ | $6.55 \mathrm{E}+08$ | 8.43E+08 | 3.69E+08 | 1.10E+09 | 1.47E+09 | $1.58 \mathrm{E}+09$ | $1.85 \mathrm{E}+09$ |
| 121N | Last | $3^{\text {rd }}$ | H1 | 99 | $7.34 \mathrm{E}+07$ | $3.40 \mathrm{E}+09$ | 5.38E+09 | $1.32 \mathrm{E}+10$ | $1.44 \mathrm{E}+10$ | 1.39E+10 | 4.69E+09 | $1.70 \mathrm{E}+10$ | 1.93E+10 | $2.03 \mathrm{E}+10$ | $2.18 \mathrm{E}+10$ |
| 121N | Last | $3^{\text {rd }}$ | H2 | 99 | $3.21 \mathrm{E}+07$ | $2.10 \mathrm{E}+09$ | $2.48 \mathrm{E}+09$ | $6.83 \mathrm{E}+09$ | $7.48 \mathrm{E}+09$ | 7.01E+09 | $2.25 E+09$ | 8.28E+09 | 8.94E+09 | 9.98E+09 | $1.02 \mathrm{E}+10$ |
| 121N | Last | $3{ }^{\text {rd }}$ | H3 | 99 | $1.28 \mathrm{E}+07$ | $4.79 \mathrm{E}+08$ | 5.38E+08 | 2.09E+09 | $2.25 \mathrm{E}+09$ | $2.07 \mathrm{E}+09$ | 7.22E+08 | $2.45 \mathrm{E}+09$ | $2.72 \mathrm{E}+09$ | 2.87E+09 | $3.10 \mathrm{E}+09$ |
| 52N | $1{ }^{\text {st }}$ | $3{ }^{\text {rd }}$ | H1 | 35 | $3.72 \mathrm{E}+09$ | $1.22 \mathrm{E}+10$ | $1.25 \mathrm{E}+10$ | 1.29E+10 | $1.35 \mathrm{E}+10$ | $1.34 \mathrm{E}+10$ | 1.99E+09 | $1.42 \mathrm{E}+10$ | $1.48 \mathrm{E}+10$ | $1.62 \mathrm{E}+10$ | $1.64 \mathrm{E}+10$ |
| 52N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 35 | $6.68 \mathrm{E}+09$ | $1.13 \mathrm{E}+10$ | $1.22 \mathrm{E}+10$ | $1.31 \mathrm{E}+10$ | $1.40 \mathrm{E}+10$ | 1.51E+10 | 3.27E+09 | $1.81 \mathrm{E}+10$ | $1.99 \mathrm{E}+10$ | $2.10 \mathrm{E}+10$ | $2.18 \mathrm{E}+10$ |
| 52N | $1^{\text {st }}$ | $3^{\text {rd }}$ | H3 | 35 | $1.20 \mathrm{E}+09$ | $3.46 \mathrm{E}+09$ | 3.65E+09 | $3.91 \mathrm{E}+09$ | 4.14E+09 | 4.11E+09 | 6.36E+08 | $4.42 \mathrm{E}+09$ | $4.58 \mathrm{E}+09$ | 4.87E+09 | $5.28 \mathrm{E}+09$ |
| 52N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 36 | $1.28 \mathrm{E}+10$ | $1.29 \mathrm{E}+10$ | $1.30 \mathrm{E}+10$ | $1.36 \mathrm{E}+10$ | $1.43 \mathrm{E}+10$ | $1.43 \mathrm{E}+10$ | 9.34E+08 | $1.50 \mathrm{E}+10$ | $1.56 \mathrm{E}+10$ | $1.62 \mathrm{E}+10$ | $1.63 \mathrm{E}+10$ |
| 52N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 36 | $1.38 \mathrm{E}+10$ | $1.55 \mathrm{E}+10$ | 1.61E+10 | $1.80 \mathrm{E}+10$ | $2.05 \mathrm{E}+10$ | $2.01 \mathrm{E}+10$ | 3.05E+09 | $2.25 \mathrm{E}+10$ | $2.37 \mathrm{E}+10$ | $2.41 \mathrm{E}+10$ | $2.71 \mathrm{E}+10$ |
| 52N | $2^{\text {nd }}$ | $3^{\text {rd }}$ | H3 | 36 | $3.67 \mathrm{E}+09$ | $3.77 \mathrm{E}+09$ | 4.11E+09 | $4.28 \mathrm{E}+09$ | 4.52E+09 | $4.52 \mathrm{E}+09$ | 3.50E+08 | 4.76E+09 | 4.99E+09 | 5.03E+09 | $5.21 \mathrm{E}+09$ |
| 52N | Last | $3^{\text {rd }}$ | H1 | 36 | $5.78 \mathrm{E}+08$ | $1.07 \mathrm{E}+09$ | $2.38 \mathrm{E}+09$ | $1.38 \mathrm{E}+10$ | 1.47E+10 | $1.31 \mathrm{E}+10$ | 4.98E+09 | $1.56 \mathrm{E}+10$ | $1.68 \mathrm{E}+10$ | $1.74 \mathrm{E}+10$ | $1.82 \mathrm{E}+10$ |
| 52N | Last | $3{ }^{\text {rd }}$ | H2 | 36 | $1.95 \mathrm{E}+09$ | $2.81 \mathrm{E}+09$ | 6.41E+09 | $2.50 \mathrm{E}+10$ | $2.68 \mathrm{E}+10$ | $2.36 \mathrm{E}+10$ | 8.21E+09 | $2.80 \mathrm{E}+10$ | $2.87 \mathrm{E}+10$ | $2.89 \mathrm{E}+10$ | $3.05 \mathrm{E}+10$ |
| 52N | Last | $3{ }^{\text {rd }}$ | H3 | 36 | $2.08 \mathrm{E}+08$ | $3.15 \mathrm{E}+08$ | 7.49E+08 | $4.58 \mathrm{E}+09$ | $4.75 \mathrm{E}+09$ | $4.16 \mathrm{E}+09$ | 1.57E+09 | 5.00E+09 | 5.11E+09 | $5.20 \mathrm{E}+09$ | $5.21 \mathrm{E}+09$ |
| 118N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H1 | 67 | $3.28 \mathrm{E}+09$ | $6.44 \mathrm{E}+09$ | $7.48 \mathrm{E}+09$ | $1.19 \mathrm{E}+10$ | $1.31 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $2.61 \mathrm{E}+09$ | $1.40 \mathrm{E}+10$ | $1.46 \mathrm{E}+10$ | $1.48 \mathrm{E}+10$ | $1.57 \mathrm{E}+10$ |
| 118N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H2 | 67 | $9.97 \mathrm{E}+08$ | $1.73 \mathrm{E}+09$ | $1.76 \mathrm{E}+09$ | $2.91 \mathrm{E}+09$ | $4.39 \mathrm{E}+09$ | $3.90 \mathrm{E}+09$ | $1.23 \mathrm{E}+09$ | 4.95E+09 | 5.11E+09 | $5.27 \mathrm{E}+09$ | 5.52E+09 |
| 118N | $1^{\text {st }}$ | $3{ }^{\text {rd }}$ | H3 | 66 | $5.39 \mathrm{E}+07$ | 4.39E+08 | 5.72E+08 | 7.21E+08 | 8.77E+08 | 8.42E+08 | $2.07 \mathrm{E}+08$ | 1.01E+09 | 1.07E+09 | 1.10E+09 | 1.15E+09 |
| 118N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H1 | 68 | $7.76 \mathrm{E}+09$ | 8.63E+09 | 8.92E+09 | 9.32E+09 | 1.04E+10 | $1.06 \mathrm{E}+10$ | $1.44 \mathrm{E}+09$ | $1.15 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $1.31 \mathrm{E}+10$ | 1.47E+10 |
| 118N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H2 | 67 | $3.85 \mathrm{E}+09$ | 4.11E+09 | $4.16 \mathrm{E}+09$ | $4.45 \mathrm{E}+09$ | $4.80 \mathrm{E}+09$ | $4.84 \mathrm{E}+09$ | $4.90 \mathrm{E}+08$ | 5.15E+09 | 5.45E+09 | $5.69 \mathrm{E}+09$ | $6.18 \mathrm{E}+09$ |
| 118N | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | H3 | 67 | $9.46 \mathrm{E}+08$ | $1.04 \mathrm{E}+09$ | $1.09 \mathrm{E}+09$ | $1.13 \mathrm{E}+09$ | $1.22 \mathrm{E}+09$ | $1.23 \mathrm{E}+09$ | $1.26 \mathrm{E}+08$ | $1.32 \mathrm{E}+09$ | $1.40 \mathrm{E}+09$ | $1.45 \mathrm{E}+09$ | $1.49 \mathrm{E}+09$ |
| 118N | Last | $3{ }^{\text {rd }}$ | H1 | 68 | $7.79 \mathrm{E}+07$ | 4.59E+09 | 9.70E+09 | 1.05E+10 | $1.14 \mathrm{E}+10$ | $1.14 \mathrm{E}+10$ | $2.84 \mathrm{E}+09$ | $1.34 \mathrm{E}+10$ | $1.44 \mathrm{E}+10$ | $1.46 \mathrm{E}+10$ | $1.55 \mathrm{E}+10$ |
| 118N | Last | $3^{\text {rd }}$ | H2 | 68 | $6.73 \mathrm{E}+08$ | 5.10E+09 | 5.25E+09 | 5.77E+09 | 6.07E+09 | 5.86E+09 | 1.06E+09 | 6.33E+09 | $6.59 \mathrm{E}+09$ | 6.76E+09 | 7.01E+09 |
| 118N | Last | $3{ }^{\text {rd }}$ | H3 | 67 | $4.10 \mathrm{E}+08$ | $1.21 \mathrm{E}+09$ | $1.26 \mathrm{E}+09$ | 1.33E+09 | $1.37 \mathrm{E}+09$ | $1.35 \mathrm{E}+09$ | $1.40 \mathrm{E}+08$ | $1.42 \mathrm{E}+09$ | $1.46 \mathrm{E}+09$ | 1.47E+09 | $1.56 \mathrm{E}+09$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 255 | 1st | 3rd |  | H1 | 77 | $3.79 \mathrm{E}+09$ | $6.94 \mathrm{E}+09$ | 8.05E+09 | 8.90E+09 | $1.02 \mathrm{E}+10$ | 9.92E+09 | $1.62 \mathrm{E}+09$ | 1.11E+10 | 1.17E+10 | $1.23 \mathrm{E}+10$ | $1.26 \mathrm{E}+10$ |
| 255 | 1st | 3rd | H2 | 77 | $2.98 \mathrm{E}+09$ | $5.41 \mathrm{E}+09$ | $6.25 \mathrm{E}+09$ | 7.03E+09 | $7.53 \mathrm{E}+09$ | $7.43 \mathrm{E}+09$ | $9.98 \mathrm{E}+08$ | 8.08E+09 | 8.55E+09 | $8.68 \mathrm{E}+09$ | $9.15 \mathrm{E}+09$ |
| 255 | 1st | 3rd | H3 | 77 | $2.52 \mathrm{E}+08$ | 7.33E+08 | 7.76E+08 | 8.54E+08 | $9.49 \mathrm{E}+08$ | $1.11 \mathrm{E}+10$ | $4.86 \mathrm{E}+10$ | $1.02 \mathrm{E}+09$ | $1.13 \mathrm{E}+09$ | $5.13 \mathrm{E}+10$ | $3.33 \mathrm{E}+11$ |
| 255 | 2nd | 3rd | H1 | 78 | $5.70 \mathrm{E}+09$ | $6.17 \mathrm{E}+09$ | $6.28 \mathrm{E}+09$ | 6.98E+09 | $7.92 \mathrm{E}+09$ | $7.77 \mathrm{E}+09$ | 9.83E+08 | 8.61E+09 | 8.95E+09 | $9.10 \mathrm{E}+09$ | $9.83 \mathrm{E}+09$ |
| 255 | 2nd | 3rd | H2 | 78 | $3.60 \mathrm{E}+09$ | 3.86E+09 | 4.02E+09 | $4.34 \mathrm{E}+09$ | $4.98 \mathrm{E}+09$ | $5.16 \mathrm{E}+09$ | $9.42 \mathrm{E}+08$ | $5.88 \mathrm{E}+09$ | $6.65 \mathrm{E}+09$ | $6.74 \mathrm{E}+09$ | $7.10 \mathrm{E}+09$ |
| 255 | 2nd | 3rd | H3 | 78 | $4.00 \mathrm{E}+08$ | $4.56 \mathrm{E}+08$ | 4.77E+08 | $5.23 E+08$ | $5.79 \mathrm{E}+08$ | $9.42 \mathrm{E}+09$ | $4.33 \mathrm{E}+10$ | $6.48 \mathrm{E}+08$ | 7.87E+08 | $3.87 \mathrm{E}+10$ | $2.83 \mathrm{E}+11$ |
| 255 | Last | 3rd | H1 | 79 | $7.95 \mathrm{E}+08$ | $4.58 \mathrm{E}+09$ | $4.76 \mathrm{E}+09$ | 5.00E+09 | $5.40 \mathrm{E}+09$ | 5.43E+09 | $7.70 \mathrm{E}+08$ | 5.97E+09 | 6.21E+09 | $6.45 \mathrm{E}+09$ | $6.47 \mathrm{E}+09$ |
| 255 | Last | 3rd | H2 | 79 | $5.70 \mathrm{E}+08$ | $3.40 \mathrm{E}+09$ | $3.44 \mathrm{E}+09$ | 3.57E+09 | $3.73 \mathrm{E}+09$ | $3.74 \mathrm{E}+09$ | 4.42E+08 | 3.90E+09 | 4.14E+09 | $4.30 \mathrm{E}+09$ | $4.50 \mathrm{E}+09$ |
| 255 | Last | 3rd | H3 | 79 | $3.47 \mathrm{E}+08$ | $3.74 \mathrm{E}+08$ | $4.42 \mathrm{E}+08$ | 5.10E+08 | $5.84 \mathrm{E}+08$ | $6.14 \mathrm{E}+08$ | $1.60 \mathrm{E}+08$ | $6.84 \mathrm{E}+08$ | 8.82E+08 | $9.72 \mathrm{E}+08$ | $1.03 \mathrm{E}+09$ |
| 249 | 1st | 3rd | H1 | 168 | $8.79 \mathrm{E}+08$ | $2.40 \mathrm{E}+09$ | $3.57 \mathrm{E}+09$ | $6.66 \mathrm{E}+09$ | $7.69 \mathrm{E}+09$ | $7.27 \mathrm{E}+09$ | $2.14 \mathrm{E}+09$ | 8.66E+09 | $9.60 \mathrm{E}+09$ | $1.01 \mathrm{E}+10$ | $1.16 \mathrm{E}+10$ |
| 249 | 1st | 3rd | H2 | 168 | $5.71 \mathrm{E}+08$ | $1.79 \mathrm{E}+09$ | 3.07E+09 | 4.27E+09 | $5.59 \mathrm{E}+09$ | 5.47E+09 | $1.94 \mathrm{E}+09$ | 6.94E+09 | 7.80E+09 | 8.27E+09 | $9.75 \mathrm{E}+09$ |
| 249 | 1st | 3rd | H3 | 168 | $1.06 \mathrm{E}+08$ | $2.43 \mathrm{E}+08$ | 3.27E+08 | $5.86 \mathrm{E}+08$ | $6.55 \mathrm{E}+08$ | $6.29 \mathrm{E}+08$ | $1.68 \mathrm{E}+08$ | 7.21E+08 | 8.14E+08 | 8.54E+08 | $9.50 \mathrm{E}+08$ |
| 249 | 2nd | 3rd | H1 | 168 | $4.64 \mathrm{E}+08$ | $5.70 \mathrm{E}+09$ | 5.89E+09 | $6.32 \mathrm{E}+09$ | $6.98 \mathrm{E}+09$ | $8.07 \mathrm{E}+09$ | $3.72 \mathrm{E}+09$ | 8.05E+09 | $9.78 \mathrm{E}+09$ | $1.93 E+10$ | $2.33 \mathrm{E}+10$ |
| 249 | 2nd | 3rd | H2 | 168 | $3.52 \mathrm{E}+08$ | $4.33 \mathrm{E}+09$ | $4.44 \mathrm{E}+09$ | $4.75 \mathrm{E}+09$ | $5.22 \mathrm{E}+09$ | 5.89E+09 | $2.08 \mathrm{E}+09$ | $6.50 \mathrm{E}+09$ | 7.47E+09 | $1.20 \mathrm{E}+10$ | $1.43 \mathrm{E}+10$ |
| 249 | 2nd | 3rd | H3 | 168 | 5.83E+08 | 8.42E+08 | $8.84 \mathrm{E}+08$ | $9.44 \mathrm{E}+08$ | $1.01 \mathrm{E}+09$ | $1.06 \mathrm{E}+09$ | $2.25 E+08$ | $1.12 \mathrm{E}+09$ | $1.26 \mathrm{E}+09$ | $1.56 \mathrm{E}+09$ | $2.14 \mathrm{E}+09$ |
| 249 | Last | 3rd | H1 | 170 | $1.99 \mathrm{E}+09$ | 5.62E+09 | $5.78 \mathrm{E}+09$ | 6.06E+09 | $6.43 \mathrm{E}+09$ | $6.51 \mathrm{E}+09$ | 7.35E+08 | 6.91E+09 | 7.51E+09 | $7.76 \mathrm{E}+09$ | 8.64E+09 |
| 249 | Last | 3rd | H2 | 170 | $1.28 \mathrm{E}+09$ | $4.52 \mathrm{E}+09$ | 4.61E+09 | $4.94 \mathrm{E}+09$ | $5.26 \mathrm{E}+09$ | $5.27 \mathrm{E}+09$ | 5.67E+08 | 5.59E+09 | 5.97E+09 | $6.11 \mathrm{E}+09$ | $6.66 \mathrm{E}+09$ |
| 249 | Last | 3rd | H3 | 169 | $2.68 \mathrm{E}+08$ | $8.18 \mathrm{E}+08$ | 8.64E+08 | $9.33 E+08$ | $1.01 \mathrm{E}+09$ | $1.02 \mathrm{E}+09$ | $1.51 \mathrm{E}+08$ | 1.10E+09 | $1.23 \mathrm{E}+09$ | $1.30 \mathrm{E}+09$ | $1.43 \mathrm{E}+09$ |
| 252 | 1st | 3rd | H1 | 85 | $3.05 \mathrm{E}+08$ | $1.69 \mathrm{E}+09$ | $2.34 \mathrm{E}+09$ | $4.38 \mathrm{E}+09$ | $6.39 \mathrm{E}+09$ | $6.04 \mathrm{E}+09$ | $2.35 \mathrm{E}+09$ | 7.94E+09 | 8.83E+09 | $9.08 \mathrm{E}+09$ | $9.47 \mathrm{E}+09$ |
| 252 | 1st | 3rd | H2 | 85 | $3.05 \mathrm{E}+08$ | $1.69 \mathrm{E}+09$ | $2.34 \mathrm{E}+09$ | $4.38 \mathrm{E}+09$ | $6.39 \mathrm{E}+09$ | $6.04 \mathrm{E}+09$ | $2.35 \mathrm{E}+09$ | 7.94E+09 | 8.83E+09 | $9.08 \mathrm{E}+09$ | $9.47 \mathrm{E}+09$ |
| 252 | 1st | 3 rd | H3 | 84 | $1.77 \mathrm{E}+08$ | $1.13 \mathrm{E}+09$ | $1.58 \mathrm{E}+09$ | $3.16 \mathrm{E}+09$ | $4.21 \mathrm{E}+09$ | $3.81 \mathrm{E}+09$ | $1.31 \mathrm{E}+09$ | $4.67 \mathrm{E}+09$ | $5.21 \mathrm{E}+09$ | $5.39 \mathrm{E}+09$ | 5.70E+09 |
| 252 | 2nd | 3 rd | H1 | 85 | $4.30 \mathrm{E}+07$ | $1.34 \mathrm{E}+08$ | $1.52 \mathrm{E}+08$ | $2.80 \mathrm{E}+08$ | $4.30 \mathrm{E}+08$ | $4.12 \mathrm{E}+08$ | $1.63 \mathrm{E}+08$ | $5.35 \mathrm{E}+08$ | $6.13 \mathrm{E}+08$ | $6.30 \mathrm{E}+08$ | $7.38 \mathrm{E}+08$ |
| 252 | 2nd | 3rd | H2 | 85 | $6.82 \mathrm{E}+09$ | $7.83 \mathrm{E}+09$ | 8.19E+09 | $9.26 \mathrm{E}+09$ | $1.19 \mathrm{E}+10$ | $1.20 \mathrm{E}+10$ | $3.33 E+09$ | $1.38 \mathrm{E}+10$ | $1.78 \mathrm{E}+10$ | $1.83 \mathrm{E}+10$ | $1.99 \mathrm{E}+10$ |
| 252 | 2nd | 3rd | H3 | 84 | $6.82 \mathrm{E}+09$ | $7.83 \mathrm{E}+09$ | 8.19E+09 | $9.26 \mathrm{E}+09$ | $1.19 \mathrm{E}+10$ | 1.20E+10 | $3.33 E+09$ | $1.38 \mathrm{E}+10$ | $1.78 \mathrm{E}+10$ | $1.83 \mathrm{E}+10$ | $1.99 \mathrm{E}+10$ |
| 252 | Last | 3rd | H1 | 86 | $2.90 \mathrm{E}+09$ | $3.22 \mathrm{E}+09$ | $3.43 \mathrm{E}+09$ | $3.61 \mathrm{E}+09$ | $3.91 \mathrm{E}+09$ | $4.36 \mathrm{E}+09$ | $1.23 E+09$ | $4.77 \mathrm{E}+09$ | $7.14 \mathrm{E}+09$ | $7.26 \mathrm{E}+09$ | 7.73E+09 |
| 252 | Last | 3rd | H2 | 86 | $2.80 \mathrm{E}+08$ | $2.95 \mathrm{E}+08$ | $3.32 \mathrm{E}+08$ | $3.72 \mathrm{E}+08$ | $4.29 \mathrm{E}+08$ | $4.85 \mathrm{E}+08$ | $1.87 \mathrm{E}+08$ | 4.96E+08 | 7.57E+08 | $8.69 \mathrm{E}+08$ | $1.11 \mathrm{E}+09$ |
| 252 | Last | 3rd | H3 | 85 | $4.95 \mathrm{E}+09$ | $1.97 \mathrm{E}+10$ | $2.00 \mathrm{E}+10$ | $2.09 \mathrm{E}+10$ | $2.22 \mathrm{E}+10$ | $2.19 \mathrm{E}+10$ | $2.41 \mathrm{E}+09$ | $2.32 \mathrm{E}+10$ | $2.40 \mathrm{E}+10$ | $2.44 \mathrm{E}+10$ | $2.65 \mathrm{E}+10$ |
| 172 | 1st | 3rd | H1 | 64 | $4.95 \mathrm{E}+09$ | $1.97 \mathrm{E}+10$ | $2.00 \mathrm{E}+10$ | $2.09 \mathrm{E}+10$ | $2.22 \mathrm{E}+10$ | $2.19 \mathrm{E}+10$ | $2.41 \mathrm{E}+09$ | $2.32 \mathrm{E}+10$ | $2.40 \mathrm{E}+10$ | $2.44 \mathrm{E}+10$ | $2.65 \mathrm{E}+10$ |
| 172 | 1st | 3rd | H2 | 64 | $2.06 \mathrm{E}+09$ | $7.25 \mathrm{E}+09$ | 7.69E+09 | $8.44 \mathrm{E}+09$ | $9.87 \mathrm{E}+09$ | $9.72 \mathrm{E}+09$ | $1.62 \mathrm{E}+09$ | $1.09 \mathrm{E}+10$ | $1.16 \mathrm{E}+10$ | $1.20 \mathrm{E}+10$ | $1.22 \mathrm{E}+10$ |
| 172 | 1st | 3rd | H3 | 62 | $6.91 \mathrm{E}+08$ | $7.54 \mathrm{E}+08$ | 8.01E+08 | 8.67E+08 | $9.72 \mathrm{E}+08$ | $9.78 \mathrm{E}+08$ | $1.50 \mathrm{E}+08$ | $1.06 \mathrm{E}+09$ | $1.19 \mathrm{E}+09$ | $1.21 \mathrm{E}+09$ | $1.49 \mathrm{E}+09$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 172 | 2nd | 3rd |  | H1 | 65 | $4.84 \mathrm{E}+07$ | $2.00 \mathrm{E}+08$ | 7.70E+08 | $1.52 \mathrm{E}+09$ | $5.36 \mathrm{E}+09$ | 6.27E+09 | 5.25E+09 | $9.68 \mathrm{E}+09$ | $1.50 \mathrm{E}+10$ | $1.61 \mathrm{E}+10$ | $1.94 \mathrm{E}+10$ |
| 172 | 2nd | 3 rd | H2 | 65 | $7.66 \mathrm{E}+07$ | 5.12E+08 | $1.48 \mathrm{E}+09$ | $2.78 \mathrm{E}+09$ | $7.32 \mathrm{E}+09$ | $7.54 \mathrm{E}+09$ | 5.10E+09 | $1.16 \mathrm{E}+10$ | $1.52 \mathrm{E}+10$ | $1.61 \mathrm{E}+10$ | $1.81 \mathrm{E}+10$ |
| 172 | 2nd | 3rd | H3 | 63 | $7.90 \mathrm{E}+07$ | $1.05 \mathrm{E}+08$ | $1.39 \mathrm{E}+08$ | $3.44 \mathrm{E}+08$ | $1.07 \mathrm{E}+09$ | $9.55 \mathrm{E}+08$ | 5.87E+08 | $1.50 \mathrm{E}+09$ | $1.66 \mathrm{E}+09$ | $1.69 \mathrm{E}+09$ | $1.80 \mathrm{E}+09$ |
| 172 | Last | 3rd | H1 | 65 | $1.88 \mathrm{E}+10$ | $1.98 \mathrm{E}+10$ | $2.28 \mathrm{E}+10$ | $3.23 E+10$ | $4.39 \mathrm{E}+10$ | $3.98 \mathrm{E}+10$ | $1.02 \mathrm{E}+10$ | $4.82 \mathrm{E}+10$ | $5.02 \mathrm{E}+10$ | $5.09 \mathrm{E}+10$ | $5.35 \mathrm{E}+10$ |
| 172 | Last | 3rd | H2 | 65 | $1.79 \mathrm{E}+10$ | $1.95 \mathrm{E}+10$ | $2.24 \mathrm{E}+10$ | $3.40 \mathrm{E}+10$ | $4.17 \mathrm{E}+10$ | $3.85 \mathrm{E}+10$ | 9.30E+09 | $4.52 \mathrm{E}+10$ | 4.77E+10 | $4.85 \mathrm{E}+10$ | $5.08 \mathrm{E}+10$ |
| 172 | Last | 3rd | H3 | 63 | $1.53 \mathrm{E}+09$ | $1.58 \mathrm{E}+09$ | $1.64 \mathrm{E}+09$ | $1.68 \mathrm{E}+09$ | $1.79 \mathrm{E}+09$ | $1.78 \mathrm{E}+09$ | $1.24 \mathrm{E}+08$ | $1.88 \mathrm{E}+09$ | $1.95 \mathrm{E}+09$ | $1.95 \mathrm{E}+09$ | $2.08 \mathrm{E}+09$ |
| 171 | 1st | 3 rd | H1 | 134 | $1.52 \mathrm{E}+10$ | $4.21 \mathrm{E}+10$ | $4.34 \mathrm{E}+10$ | $4.51 \mathrm{E}+10$ | $4.72 \mathrm{E}+10$ | $4.75 \mathrm{E}+10$ | 5.47E+09 | $5.08 \mathrm{E}+10$ | $5.33 \mathrm{E}+10$ | $5.48 \mathrm{E}+10$ | $5.58 \mathrm{E}+10$ |
| 171 | 1st | 3 rd | H2 | 134 | $1.61 \mathrm{E}+10$ | $3.88 \mathrm{E}+10$ | $4.04 \mathrm{E}+10$ | $4.33 E+10$ | $4.84 \mathrm{E}+10$ | $4.87 \mathrm{E}+10$ | 7.84E+09 | $5.54 \mathrm{E}+10$ | $5.79 \mathrm{E}+10$ | 5.87E+10 | $6.05 \mathrm{E}+10$ |
| 171 | 1st | 3rd | H3 | 132 | $3.54 \mathrm{E}+08$ | 1.47E+09 | $1.50 \mathrm{E}+09$ | $1.54 \mathrm{E}+09$ | $1.64 \mathrm{E}+09$ | $1.64 \mathrm{E}+09$ | $2.10 \mathrm{E}+08$ | $1.73 \mathrm{E}+09$ | $1.85 \mathrm{E}+09$ | $1.91 \mathrm{E}+09$ | $1.95 \mathrm{E}+09$ |
| 171 | 2nd | 3 rd | H1 | 135 | $3.31 \mathrm{E}+08$ | 9.07E+08 | $1.39 \mathrm{E}+09$ | $3.52 \mathrm{E}+09$ | $7.13 \mathrm{E}+09$ | $6.66 \mathrm{E}+09$ | $3.68 \mathrm{E}+09$ | $1.01 \mathrm{E}+10$ | 1.09E+10 | $1.12 E+10$ | $1.21 \mathrm{E}+10$ |
| 171 | 2nd | 3 rd | H2 | 135 | $2.22 \mathrm{E}+08$ | $6.35 \mathrm{E}+08$ | 8.49E+08 | $3.44 \mathrm{E}+09$ | $7.24 \mathrm{E}+09$ | $6.96 \mathrm{E}+09$ | 4.19E+09 | $1.09 \mathrm{E}+10$ | $1.14 \mathrm{E}+10$ | $1.19 \mathrm{E}+10$ | $1.29 \mathrm{E}+10$ |
| 171 | 2nd | 3rd | H3 | 132 | $6.68 \mathrm{E}+07$ | $1.13 \mathrm{E}+08$ | 1.57E+08 | 7.83E+08 | $1.45 \mathrm{E}+09$ | $1.20 \mathrm{E}+09$ | $6.22 E+08$ | $1.73 \mathrm{E}+09$ | $1.85 \mathrm{E}+09$ | 1.92E+09 | $2.10 \mathrm{E}+09$ |
| 171 | Last | 3rd | H1 | 136 | $6.84 \mathrm{E}+08$ | $9.30 \mathrm{E}+09$ | 9.70E+09 | $1.00 \mathrm{E}+10$ | $1.05 \mathrm{E}+10$ | $1.04 \mathrm{E}+10$ | 1.07E+09 | $1.10 \mathrm{E}+10$ | $1.13 \mathrm{E}+10$ | $1.16 \mathrm{E}+10$ | $1.21 \mathrm{E}+10$ |
| 171 | Last | 3rd | H2 | 136 | $7.10 \mathrm{E}+08$ | $1.04 \mathrm{E}+10$ | $1.06 \mathrm{E}+10$ | $1.09 \mathrm{E}+10$ | $1.13 \mathrm{E}+10$ | $1.12 \mathrm{E}+10$ | 1.04E+09 | $1.17 \mathrm{E}+10$ | $1.19 \mathrm{E}+10$ | $1.21 \mathrm{E}+10$ | $1.23 \mathrm{E}+10$ |
| 171 | Last | 3rd | H3 | 133 | $1.34 \mathrm{E}+09$ | $1.49 \mathrm{E}+09$ | $1.53 \mathrm{E}+09$ | $1.59 \mathrm{E}+09$ | $1.66 \mathrm{E}+09$ | $1.65 \mathrm{E}+09$ | 9.91E+07 | $1.72 \mathrm{E}+09$ | 1.77E+09 | $1.82 \mathrm{E}+09$ | $1.90 \mathrm{E}+09$ |
| 238 | 1st | 3rd | H1 | 72 | $3.12 \mathrm{E}+08$ | $9.96 \mathrm{E}+09$ | $1.05 \mathrm{E}+10$ | $1.10 \mathrm{E}+10$ | $1.18 \mathrm{E}+10$ | 1.20E+10 | $2.70 \mathrm{E}+09$ | $1.28 \mathrm{E}+10$ | $1.47 \mathrm{E}+10$ | $1.61 \mathrm{E}+10$ | $2.21 \mathrm{E}+10$ |
| 238 | 1st | 3rd | H2 | 71 | $2.20 \mathrm{E}+08$ | $8.75 \mathrm{E}+09$ | 9.37E+09 | $1.02 \mathrm{E}+10$ | $1.07 \mathrm{E}+10$ | $1.08 \mathrm{E}+10$ | $2.30 \mathrm{E}+09$ | $1.15 \mathrm{E}+10$ | $1.29 \mathrm{E}+10$ | $1.42 \mathrm{E}+10$ | $1.98 \mathrm{E}+10$ |
| 238 | 1st | 3rd | H3 | 67 | $1.25 \mathrm{E}+08$ | $1.33 \mathrm{E}+09$ | $1.42 \mathrm{E}+09$ | 1.57E+09 | $1.69 \mathrm{E}+09$ | $1.70 \mathrm{E}+09$ | $3.59 \mathrm{E}+08$ | $1.81 \mathrm{E}+09$ | $2.07 \mathrm{E}+09$ | $2.32 \mathrm{E}+09$ | $2.86 \mathrm{E}+09$ |
| 238 | 2nd | 3rd | H1 | 73 | $2.14 \mathrm{E}+08$ | $3.61 \mathrm{E}+08$ | $6.32 \mathrm{E}+08$ | 9.67E+08 | $1.22 \mathrm{E}+09$ | $1.49 \mathrm{E}+09$ | $9.99 \mathrm{E}+08$ | $1.66 \mathrm{E}+09$ | $3.08 \mathrm{E}+09$ | $4.41 \mathrm{E}+09$ | $4.78 \mathrm{E}+09$ |
| 238 | 2nd | 3rd | H2 | 72 | $5.55 \mathrm{E}+07$ | $2.11 \mathrm{E}+08$ | $2.90 \mathrm{E}+08$ | $5.75 \mathrm{E}+08$ | $1.09 \mathrm{E}+09$ | $1.66 \mathrm{E}+09$ | $1.50 \mathrm{E}+09$ | $2.18 \mathrm{E}+09$ | $4.22 \mathrm{E}+09$ | $5.22 \mathrm{E}+09$ | 5.57E+09 |
| 238 | 2nd | 3rd | H3 | 68 | $7.47 \mathrm{E}+07$ | $2.11 \mathrm{E}+08$ | $2.24 \mathrm{E}+08$ | $3.24 \mathrm{E}+08$ | 5.63E+08 | $8.44 \mathrm{E}+08$ | $6.50 \mathrm{E}+08$ | $1.30 \mathrm{E}+09$ | $1.88 \mathrm{E}+09$ | $2.04 \mathrm{E}+09$ | $2.44 \mathrm{E}+09$ |
| 238 | Last | 3rd | H1 | 73 | $2.38 \mathrm{E}+09$ | $2.75 \mathrm{E}+09$ | 3.02E+09 | $3.56 \mathrm{E}+09$ | $4.37 \mathrm{E}+09$ | $4.76 \mathrm{E}+09$ | $1.47 \mathrm{E}+09$ | $6.11 \mathrm{E}+09$ | $6.81 \mathrm{E}+09$ | $7.14 \mathrm{E}+09$ | $7.26 \mathrm{E}+09$ |
| 238 | Last | 3rd | H2 | 73 | $4.04 \mathrm{E}+09$ | 4.13E+09 | 4.61E+09 | 5.24E+09 | 6.07E+09 | 6.16E+09 | $1.28 \mathrm{E}+09$ | 6.95E+09 | $7.73 \mathrm{E}+09$ | 8.69E+09 | $9.45 \mathrm{E}+09$ |
| 238 | Last | 3rd | H3 | 69 | $1.83 E+09$ | $1.86 \mathrm{E}+09$ | $1.88 \mathrm{E}+09$ | 1.97E+09 | $2.16 \mathrm{E}+09$ | $2.14 \mathrm{E}+09$ | $1.91 \mathrm{E}+08$ | $2.31 \mathrm{E}+09$ | $2.38 \mathrm{E}+09$ | $2.43 \mathrm{E}+09$ | $2.52 \mathrm{E}+09$ |
| 235 | 1st | 3rd | H1 | 85 | $4.73 \mathrm{E}+09$ | $7.55 \mathrm{E}+09$ | 9.20E+09 | $9.81 \mathrm{E}+09$ | $1.10 \mathrm{E}+10$ | $1.09 \mathrm{E}+10$ | $1.71 \mathrm{E}+09$ | $1.19 \mathrm{E}+10$ | $1.31 \mathrm{E}+10$ | $1.34 \mathrm{E}+10$ | $1.40 \mathrm{E}+10$ |
| 235 | 1st | 3 rd | H2 | 85 | $5.37 \mathrm{E}+09$ | $8.46 \mathrm{E}+09$ | 9.47E+09 | $1.06 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $2.34 \mathrm{E}+09$ | $1.41 \mathrm{E}+10$ | $1.52 \mathrm{E}+10$ | $1.65 \mathrm{E}+10$ | $1.73 \mathrm{E}+10$ |
| 235 | 1st | 3rd | H3 | 85 | $1.03 \mathrm{E}+09$ | $2.26 \mathrm{E}+09$ | $2.29 \mathrm{E}+09$ | $2.38 \mathrm{E}+09$ | $2.61 \mathrm{E}+09$ | $2.69 \mathrm{E}+09$ | $4.52 \mathrm{E}+08$ | $2.91 \mathrm{E}+09$ | $3.44 \mathrm{E}+09$ | $3.63 \mathrm{E}+09$ | $3.73 \mathrm{E}+09$ |
| 235 | 2nd | 3rd | H1 | 86 | $1.04 \mathrm{E}+09$ | $2.39 \mathrm{E}+09$ | $2.73 \mathrm{E}+09$ | $3.45 \mathrm{E}+09$ | $4.86 \mathrm{E}+09$ | $4.74 \mathrm{E}+09$ | $1.59 \mathrm{E}+09$ | 5.96E+09 | $6.70 \mathrm{E}+09$ | 7.02E+09 | 8.43E+09 |
| 235 | 2nd | 3rd | H2 | 86 | $1.00 \mathrm{E}+09$ | $2.19 \mathrm{E}+09$ | $2.29 \mathrm{E}+09$ | $2.73 \mathrm{E}+09$ | $3.61 \mathrm{E}+09$ | $3.80 \mathrm{E}+09$ | $1.33 \mathrm{E}+09$ | $4.78 \mathrm{E}+09$ | $5.64 \mathrm{E}+09$ | $6.38 \mathrm{E}+09$ | $6.90 \mathrm{E}+09$ |
| 235 | 2nd | 3rd | H3 | 86 | $1.93 \mathrm{E}+08$ | $5.14 \mathrm{E}+08$ | $6.31 \mathrm{E}+08$ | $1.49 \mathrm{E}+09$ | $1.96 \mathrm{E}+09$ | $2.10 \mathrm{E}+09$ | $1.02 \mathrm{E}+09$ | $2.89 \mathrm{E}+09$ | $3.48 \mathrm{E}+09$ | $3.62 \mathrm{E}+09$ | $4.29 \mathrm{E}+09$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 235 | Last | 3rd |  | H1 | 86 | $4.44 \mathrm{E}+09$ | 5.33E+09 | 5.91E+09 | 7.68E+09 | $9.82 \mathrm{E}+09$ | $9.54 \mathrm{E}+09$ | $2.51 \mathrm{E}+09$ | 1.17E+10 | $1.27 \mathrm{E}+10$ | $1.28 \mathrm{E}+10$ | $1.33 \mathrm{E}+10$ |
| 235 | Last | 3rd | H2 | 86 | $5.04 \mathrm{E}+09$ | $6.08 \mathrm{E}+09$ | $6.32 \mathrm{E}+09$ | 7.15E+09 | $8.74 \mathrm{E}+09$ | $8.48 \mathrm{E}+09$ | $1.49 \mathrm{E}+09$ | $9.70 \mathrm{E}+09$ | $1.02 \mathrm{E}+10$ | $1.05 \mathrm{E}+10$ | $1.08 \mathrm{E}+10$ |
| 235 | Last | 3rd | H3 | 86 | $2.25 E+09$ | $2.41 \mathrm{E}+09$ | $2.54 \mathrm{E}+09$ | $2.78 \mathrm{E}+09$ | $3.31 \mathrm{E}+09$ | $3.30 \mathrm{E}+09$ | $5.88 \mathrm{E}+08$ | $3.79 \mathrm{E}+09$ | $4.09 \mathrm{E}+09$ | $4.18 \mathrm{E}+09$ | $4.61 \mathrm{E}+09$ |
| 237 | 1st | 3rd | H1 | 122 | $5.02 \mathrm{E}+09$ | $5.50 \mathrm{E}+09$ | 5.68E+09 | 5.95E+09 | $6.45 \mathrm{E}+09$ | $8.10 \mathrm{E}+09$ | 3.63E+09 | 8.13E+09 | $1.59 \mathrm{E}+10$ | $1.65 \mathrm{E}+10$ | $1.79 \mathrm{E}+10$ |
| 237 | 1st | 3rd | H2 | 122 | $3.98 \mathrm{E}+09$ | $4.52 \mathrm{E}+09$ | $4.66 \mathrm{E}+09$ | $5.01 \mathrm{E}+09$ | $5.47 \mathrm{E}+09$ | $6.07 \mathrm{E}+09$ | $1.74 \mathrm{E}+09$ | $6.33 \mathrm{E}+09$ | $9.49 \mathrm{E}+09$ | $1.03 \mathrm{E}+10$ | $1.14 \mathrm{E}+10$ |
| 237 | 1st | 3rd | H3 | 121 | $1.08 \mathrm{E}+09$ | $2.43 \mathrm{E}+09$ | $2.57 \mathrm{E}+09$ | $2.78 \mathrm{E}+09$ | $2.92 \mathrm{E}+09$ | $2.92 \mathrm{E}+09$ | $3.61 \mathrm{E}+08$ | $3.08 \mathrm{E}+09$ | $3.36 \mathrm{E}+09$ | $3.46 \mathrm{E}+09$ | $3.73 \mathrm{E}+09$ |
| 237 | 2nd | 3 rd | H1 | 123 | $2.77 \mathrm{E}+08$ | $1.30 \mathrm{E}+09$ | $2.80 \mathrm{E}+09$ | 6.57E+09 | $7.30 \mathrm{E}+09$ | $7.11 \mathrm{E}+09$ | $2.39 \mathrm{E}+09$ | 8.47E+09 | $9.75 \mathrm{E}+09$ | $1.02 \mathrm{E}+10$ | $1.10 \mathrm{E}+10$ |
| 237 | 2nd | 3rd | H2 | 123 | $1.42 \mathrm{E}+08$ | $9.51 \mathrm{E}+08$ | $1.58 \mathrm{E}+09$ | $3.48 \mathrm{E}+09$ | $3.86 \mathrm{E}+09$ | $3.92 \mathrm{E}+09$ | $1.51 \mathrm{E}+09$ | $4.51 \mathrm{E}+09$ | $5.32 \mathrm{E}+09$ | $6.45 \mathrm{E}+09$ | $9.70 \mathrm{E}+09$ |
| 237 | 2nd | 3rd | H3 | 122 | $9.31 \mathrm{E}+07$ | $2.11 \mathrm{E}+08$ | $5.44 \mathrm{E}+08$ | $8.25 \mathrm{E}+08$ | $1.72 \mathrm{E}+09$ | $1.59 \mathrm{E}+09$ | 8.29E+08 | $2.40 \mathrm{E}+09$ | $2.54 \mathrm{E}+09$ | $2.60 \mathrm{E}+09$ | $3.24 \mathrm{E}+09$ |
| 237 | Last | 3rd | H1 | 123 | $4.42 \mathrm{E}+09$ | $4.73 E+09$ | 4.89E+09 | $5.48 \mathrm{E}+09$ | $6.16 \mathrm{E}+09$ | $6.33 \mathrm{E}+09$ | $1.12 \mathrm{E}+09$ | $7.16 \mathrm{E}+09$ | 7.73E+09 | 8.20E+09 | $9.40 \mathrm{E}+09$ |
| 237 | Last | 3rd | H2 | 123 | $4.87 \mathrm{E}+09$ | 5.11E+09 | 5.27E+09 | 5.62E+09 | $6.22 \mathrm{E}+09$ | $6.40 \mathrm{E}+09$ | 1.07E+09 | $6.95 \mathrm{E}+09$ | 7.91E+09 | 8.49E+09 | $9.76 \mathrm{E}+09$ |
| 237 | Last | 3rd | H3 | 123 | $2.23 E+09$ | $2.54 \mathrm{E}+09$ | $2.66 \mathrm{E}+09$ | $2.88 \mathrm{E}+09$ | $3.17 \mathrm{E}+09$ | $3.18 \mathrm{E}+09$ | $4.20 \mathrm{E}+08$ | $3.49 \mathrm{E}+09$ | $3.72 \mathrm{E}+09$ | $3.90 \mathrm{E}+09$ | $4.33 \mathrm{E}+09$ |
| 50N | 1st | 3rd | H1 | 111 | $1.16 \mathrm{E}+09$ | $7.45 \mathrm{E}+09$ | 7.57E+09 | 8.08E+09 | $9.10 \mathrm{E}+09$ | 8.87E+09 | $1.21 \mathrm{E}+09$ | $9.80 \mathrm{E}+09$ | $1.02 \mathrm{E}+10$ | $1.03 \mathrm{E}+10$ | $1.08 \mathrm{E}+10$ |
| 50N | 1st | 3rd | H2 | 111 | $8.24 \mathrm{E}+08$ | $6.11 E+09$ | $6.20 \mathrm{E}+09$ | $6.51 \mathrm{E}+09$ | $7.00 \mathrm{E}+09$ | $6.97 E+09$ | $8.66 \mathrm{E}+08$ | $7.44 \mathrm{E}+09$ | 7.84E+09 | 8.24E+09 | 8.82E+09 |
| 50N | 1st | 3rd | H3 | 111 | $5.98 \mathrm{E}+08$ | $3.35 E+09$ | $3.47 \mathrm{E}+09$ | 3.59E+09 | $3.79 \mathrm{E}+09$ | $3.79 \mathrm{E}+09$ | $4.10 \mathrm{E}+08$ | $4.02 \mathrm{E}+09$ | 4.18E+09 | 4.27E+09 | $4.50 \mathrm{E}+09$ |
| 50N | 2nd | 3rd | H1 | 111 | $2.18 \mathrm{E}+08$ | $2.85 \mathrm{E}+09$ | 4.89E+09 | 9.60E+09 | $1.10 \mathrm{E}+10$ | 9.95E+09 | 3.19E+09 | 1.19E+10 | $1.26 \mathrm{E}+10$ | $1.29 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ |
| 50N | 2nd | 3rd | H2 | 111 | $2.42 \mathrm{E}+08$ | $3.15 \mathrm{E}+09$ | $4.40 \mathrm{E}+09$ | 8.08E+09 | $1.16 \mathrm{E}+10$ | $1.01 \mathrm{E}+10$ | $3.56 \mathrm{E}+09$ | $1.28 \mathrm{E}+10$ | $1.35 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ | $1.45 \mathrm{E}+10$ |
| 50N | 2nd | 3rd | H3 | 112 | $4.16 \mathrm{E}+07$ | $3.27 E+09$ | $9.62 \mathrm{E}+09$ | $1.75 \mathrm{E}+10$ | $2.00 \mathrm{E}+10$ | $1.86 \mathrm{E}+10$ | 6.10E+09 | $2.27 \mathrm{E}+10$ | $2.50 \mathrm{E}+10$ | $2.55 \mathrm{E}+10$ | $2.73 \mathrm{E}+10$ |
| 50N | Last | 3rd | H1 | 112 | 8.91E+09 | $9.72 \mathrm{E}+09$ | $1.00 \mathrm{E}+10$ | $1.04 \mathrm{E}+10$ | $1.09 \mathrm{E}+10$ | 1.09E+10 | $7.76 \mathrm{E}+08$ | $1.16 \mathrm{E}+10$ | $1.20 \mathrm{E}+10$ | $1.22 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ |
| 50N | Last | 3rd | H2 | 112 | $1.04 \mathrm{E}+10$ | $1.10 \mathrm{E}+10$ | $1.13 \mathrm{E}+10$ | $1.16 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $1.24 \mathrm{E}+10$ | $9.00 \mathrm{E}+08$ | $1.30 \mathrm{E}+10$ | $1.35 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ | $1.46 \mathrm{E}+10$ |
| 50N | Last | 3rd | H3 | 112 | $1.45 \mathrm{E}+10$ | $1.59 \mathrm{E}+10$ | $1.72 \mathrm{E}+10$ | $1.84 \mathrm{E}+10$ | $1.95 \mathrm{E}+10$ | $1.95 \mathrm{E}+10$ | $1.88 \mathrm{E}+09$ | $2.09 \mathrm{E}+10$ | $2.19 \mathrm{E}+10$ | $2.25 \mathrm{E}+10$ | $2.32 \mathrm{E}+10$ |
| 120N | 1st | 3 rd | H1 | 50 | $2.31 \mathrm{E}+07$ | $1.18 \mathrm{E}+09$ | 8.98E+09 | 9.33E+09 | $9.67 \mathrm{E}+09$ | $9.04 \mathrm{E}+09$ | $2.39 \mathrm{E}+09$ | $1.00 \mathrm{E}+10$ | $1.03 \mathrm{E}+10$ | $1.05 \mathrm{E}+10$ | $1.07 \mathrm{E}+10$ |
| 120N | 1st | 3rd | H2 | 50 | $6.02 \mathrm{E}+07$ | $1.49 \mathrm{E}+09$ | $9.74 \mathrm{E}+09$ | $1.03 \mathrm{E}+10$ | $1.07 \mathrm{E}+10$ | $1.00 \mathrm{E}+10$ | $2.63 \mathrm{E}+09$ | $1.11 \mathrm{E}+10$ | $1.14 \mathrm{E}+10$ | $1.17 \mathrm{E}+10$ | $1.23 \mathrm{E}+10$ |
| 120N | 1st | 3rd | H3 | 50 | $1.24 \mathrm{E}+08$ | $3.23 E+09$ | $1.58 \mathrm{E}+10$ | $1.82 \mathrm{E}+10$ | $2.03 \mathrm{E}+10$ | $1.86 \mathrm{E}+10$ | 4.99E+09 | $2.11 \mathrm{E}+10$ | $2.16 \mathrm{E}+10$ | $2.20 \mathrm{E}+10$ | $2.29 \mathrm{E}+10$ |
| 120N | 2nd | 3rd | H1 | 51 | $1.04 \mathrm{E}+09$ | $4.04 \mathrm{E}+09$ | 8.32E+09 | $1.16 \mathrm{E}+10$ | $1.42 \mathrm{E}+10$ | $1.49 \mathrm{E}+10$ | 5.35E+09 | $1.91 \mathrm{E}+10$ | $2.21 \mathrm{E}+10$ | $2.23 \mathrm{E}+10$ | $2.28 \mathrm{E}+10$ |
| 120N | 2nd | 3rd | H2 | 51 | 8.84E+08 | $2.96 \mathrm{E}+09$ | 4.90E+09 | $7.08 \mathrm{E}+09$ | 8.79E+09 | $9.17 \mathrm{E}+09$ | $3.34 \mathrm{E}+09$ | $1.20 \mathrm{E}+10$ | $1.33 \mathrm{E}+10$ | $1.46 \mathrm{E}+10$ | $1.54 \mathrm{E}+10$ |
| 120N | 2nd | 3rd | H3 | 50 | $2.78 \mathrm{E}+08$ | $9.47 \mathrm{E}+08$ | $1.99 \mathrm{E}+09$ | $2.85 \mathrm{E}+09$ | $3.77 \mathrm{E}+09$ | $3.80 \mathrm{E}+09$ | $1.43 \mathrm{E}+09$ | 5.09E+09 | 5.54E+09 | $5.81 \mathrm{E}+09$ | $5.94 \mathrm{E}+09$ |
| 120N | Last | 3rd | H1 | 51 | $2.20 \mathrm{E}+10$ | $2.26 E+10$ | $2.29 \mathrm{E}+10$ | $2.41 \mathrm{E}+10$ | $2.52 \mathrm{E}+10$ | $2.56 \mathrm{E}+10$ | $2.22 \mathrm{E}+09$ | $2.63 \mathrm{E}+10$ | $2.89 \mathrm{E}+10$ | 3.02E+10 | $3.15 \mathrm{E}+10$ |
| 120N | Last | 3rd | H2 | 51 | $1.31 \mathrm{E}+10$ | $1.33 \mathrm{E}+10$ | $1.34 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ | $1.43 \mathrm{E}+10$ | $1.44 \mathrm{E}+10$ | 8.78E+08 | $1.48 \mathrm{E}+10$ | $1.55 \mathrm{E}+10$ | $1.62 \mathrm{E}+10$ | $1.73 \mathrm{E}+10$ |
| 120N | Last | 3rd | H3 | 51 | $4.31 \mathrm{E}+09$ | $4.58 \mathrm{E}+09$ | $4.68 \mathrm{E}+09$ | 4.83E+09 | $5.17 \mathrm{E}+09$ | $5.24 \mathrm{E}+09$ | 4.77E+08 | 5.67E+09 | 5.97E+09 | 6.11E+09 | $6.23 \mathrm{E}+09$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Number of Impacts | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 240 | 1st | 3rd |  | H1 | 98 | 8.43E+08 | $3.76 \mathrm{E}+09$ | $2.52 \mathrm{E}+10$ | $2.68 \mathrm{E}+10$ | $2.91 \mathrm{E}+10$ | $2.74 \mathrm{E}+10$ | 8.17E+09 | $3.23 E+10$ | $3.39 \mathrm{E}+10$ | $3.41 \mathrm{E}+10$ | $3.47 \mathrm{E}+10$ |
| 240 | 1st | 3rd | H2 | 99 | 5.11E+08 | $2.24 \mathrm{E}+09$ | $1.44 \mathrm{E}+10$ | $1.48 \mathrm{E}+10$ | $1.60 \mathrm{E}+10$ | 1.47E+10 | 4.14E+09 | $1.66 \mathrm{E}+10$ | $1.71 \mathrm{E}+10$ | $1.73 \mathrm{E}+10$ | $1.79 \mathrm{E}+10$ |
| 240 | 1st | 3rd | H3 | 98 | $4.18 \mathrm{E}+08$ | $1.13 \mathrm{E}+09$ | 4.83E+09 | $4.94 \mathrm{E}+09$ | $5.23 \mathrm{E}+09$ | $4.98 \mathrm{E}+09$ | 1.20E+09 | 5.50E+09 | $5.74 \mathrm{E}+09$ | $5.88 \mathrm{E}+09$ | $6.08 \mathrm{E}+09$ |
| 240 | 2nd | 3rd | H1 | 99 | 1.17E+08 | $1.76 \mathrm{E}+09$ | $2.77 \mathrm{E}+09$ | $6.54 \mathrm{E}+09$ | 8.34E+09 | $9.20 \mathrm{E}+09$ | 4.73E+09 | $1.20 \mathrm{E}+10$ | $1.64 \mathrm{E}+10$ | $1.77 \mathrm{E}+10$ | $1.97 \mathrm{E}+10$ |
| 240 | 2nd | 3 rd | H2 | 99 | 4.17E+07 | 1.20E+09 | 2.02E+09 | 4.13E+09 | $6.15 \mathrm{E}+09$ | 7.11E+09 | $4.21 \mathrm{E}+09$ | $1.02 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ | $1.51 \mathrm{E}+10$ | $1.56 \mathrm{E}+10$ |
| 240 | 2nd | 3rd | H3 | 99 | 4.96E+07 | 4.89E+08 | 7.81E+08 | $1.70 \mathrm{E}+09$ | $2.39 \mathrm{E}+09$ | 2.47E+09 | $1.16 \mathrm{E}+09$ | $3.32 \mathrm{E}+09$ | $4.22 \mathrm{E}+09$ | $4.38 \mathrm{E}+09$ | $4.77 \mathrm{E}+09$ |
| 240 | Last | 3rd | H1 | 100 | 7.20E+09 | 7.83E+09 | 8.13E+09 | 8.69E+09 | $1.14 \mathrm{E}+10$ | $1.16 \mathrm{E}+10$ | 3.13E+09 | $1.40 \mathrm{E}+10$ | $1.63 \mathrm{E}+10$ | $1.77 \mathrm{E}+10$ | $1.92 \mathrm{E}+10$ |
| 240 | Last | 3rd | H2 | 100 | $7.02 \mathrm{E}+09$ | 7.54E+09 | 8.04E+09 | 8.88E+09 | $1.19 \mathrm{E}+10$ | $1.19 \mathrm{E}+10$ | 3.13E+09 | $1.46 \mathrm{E}+10$ | $1.64 \mathrm{E}+10$ | $1.73 \mathrm{E}+10$ | $1.90 \mathrm{E}+10$ |
| 240 | Last | 3rd | H3 | 99 | $3.18 \mathrm{E}+09$ | $3.60 \mathrm{E}+09$ | 3.77E+09 | 4.02E+09 | $4.30 \mathrm{E}+09$ | $4.34 \mathrm{E}+09$ | $4.57 \mathrm{E}+08$ | $4.71 \mathrm{E}+09$ | $4.96 \mathrm{E}+09$ | 5.13E+09 | $5.48 \mathrm{E}+09$ |
| 182 | 1st | 3rd | H1 | 15 | 5.52E+09 | $9.20 \mathrm{E}+09$ | 9.63E+09 | 1.07E+10 | $1.30 \mathrm{E}+10$ | $1.35 \mathrm{E}+10$ | $3.40 \mathrm{E}+09$ | $1.66 \mathrm{E}+10$ | $1.85 \mathrm{E}+10$ | $1.93 \mathrm{E}+10$ | $2.17 \mathrm{E}+10$ |
| 182 | 1st | 3rd | H2 | 15 | $3.95 \mathrm{E}+07$ | $6.14 \mathrm{E}+09$ | $6.53 \mathrm{E}+09$ | $6.91 \mathrm{E}+09$ | $7.53 \mathrm{E}+09$ | $7.46 \mathrm{E}+09$ | $1.24 \mathrm{E}+09$ | 8.13E+09 | 8.73E+09 | $9.24 \mathrm{E}+09$ | 9.91E+09 |
| 182 | 1st | 3rd | H3 | 15 | $8.13 \mathrm{E}+08$ | 3.60E+09 | 3.71E+09 | $3.82 E+09$ | $4.01 \mathrm{E}+09$ | 3.99E+09 | $4.26 \mathrm{E}+08$ | $4.20 \mathrm{E}+09$ | $4.36 \mathrm{E}+09$ | $4.50 \mathrm{E}+09$ | 4.94E+09 |
| 182 | 2nd | 3rd | H1 | 15 | $1.23 \mathrm{E}+08$ | $1.23 \mathrm{E}+08$ | $1.75 \mathrm{E}+08$ | $6.68 \mathrm{E}+08$ | $1.64 \mathrm{E}+09$ | $1.63 \mathrm{E}+09$ | $1.15 \mathrm{E}+09$ | $2.43 \mathrm{E}+09$ | $3.57 \mathrm{E}+09$ | $3.77 \mathrm{E}+09$ | $3.77 \mathrm{E}+09$ |
| 182 | 2nd | 3rd | H2 | 15 | $9.20 \mathrm{E}+07$ | $9.20 \mathrm{E}+07$ | $1.26 \mathrm{E}+08$ | $6.61 \mathrm{E}+08$ | $1.79 \mathrm{E}+09$ | $1.83 \mathrm{E}+09$ | $1.36 \mathrm{E}+09$ | $3.23 \mathrm{E}+09$ | $3.70 \mathrm{E}+09$ | $3.93 \mathrm{E}+09$ | 3.93E+09 |
| 182 | 2nd | 3rd | H3 | 15 | $6.34 \mathrm{E}+07$ | $6.34 \mathrm{E}+07$ | $6.55 \mathrm{E}+07$ | $2.53 \mathrm{E}+08$ | $6.29 \mathrm{E}+08$ | $6.33 \mathrm{E}+08$ | $4.44 \mathrm{E}+08$ | $1.13 \mathrm{E}+09$ | $1.19 \mathrm{E}+09$ | $1.29 \mathrm{E}+09$ | $1.29 \mathrm{E}+09$ |
| 182 | Last | 3rd | H1 | 16 | $2.69 \mathrm{E}+09$ | $2.69 \mathrm{E}+09$ | 3.02E+09 | $5.44 \mathrm{E}+09$ | $7.39 \mathrm{E}+09$ | $6.50 \mathrm{E}+09$ | $1.85 \mathrm{E}+09$ | 7.56E+09 | 7.97E+09 | 8.02E+09 | 8.02E+09 |
| 182 | Last | 3rd | H2 | 16 | $2.28 \mathrm{E}+09$ | $2.28 \mathrm{E}+09$ | $2.66 \mathrm{E}+09$ | $4.35 \mathrm{E}+09$ | $6.74 \mathrm{E}+09$ | 5.77E+09 | $1.74 \mathrm{E}+09$ | $6.84 \mathrm{E}+09$ | $6.95 \mathrm{E}+09$ | $7.10 \mathrm{E}+09$ | $7.10 \mathrm{E}+09$ |
| 182 | Last | 3rd | H3 | 16 | 7.97E+08 | 7.97E+08 | 8.34E+08 | $1.14 \mathrm{E}+09$ | $1.24 \mathrm{E}+09$ | $1.24 \mathrm{E}+09$ | $2.46 \mathrm{E}+08$ | $1.42 \mathrm{E}+09$ | $1.55 \mathrm{E}+09$ | $1.58 \mathrm{E}+09$ | $1.58 \mathrm{E}+09$ |
| 177 | 1st | 3 rd | H1 | 9 | $7.34 \mathrm{E}+09$ | $7.34 \mathrm{E}+09$ | 7.54E+09 | 8.32E+09 | 8.69E+09 | 8.69E+09 | $7.29 \mathrm{E}+08$ | $9.15 \mathrm{E}+09$ | $9.51 \mathrm{E}+09$ | $1.02 \mathrm{E}+10$ | $1.02 \mathrm{E}+10$ |
| 177 | 1st | 3rd | H2 | 8 | 6.96E+09 | $6.96 \mathrm{E}+09$ | $6.98 \mathrm{E}+09$ | 7.62E+09 | 8.11E+09 | 8.05E+09 | $6.67 \mathrm{E}+08$ | 8.31E+09 | $8.78 \mathrm{E}+09$ | $9.56 \mathrm{E}+09$ | $9.56 \mathrm{E}+09$ |
| 177 | 1st | 3rd | H3 | 6 | $1.21 \mathrm{E}+09$ | $1.21 \mathrm{E}+09$ | $1.23 \mathrm{E}+09$ | $1.24 \mathrm{E}+09$ | $1.35 \mathrm{E}+09$ | $1.35 \mathrm{E}+09$ | $1.05 \mathrm{E}+08$ | $1.43 \mathrm{E}+09$ | $1.51 \mathrm{E}+09$ | $1.53 \mathrm{E}+09$ | $1.53 \mathrm{E}+09$ |
| 177 | 2nd | 3rd | H1 | 9 | $2.03 \mathrm{E}+07$ | $2.03 \mathrm{E}+07$ | $2.03 \mathrm{E}+07$ | $6.45 \mathrm{E}+07$ | $9.96 \mathrm{E}+08$ | 8.17E+08 | $6.06 \mathrm{E}+08$ | $1.31 \mathrm{E}+09$ | $1.48 \mathrm{E}+09$ | $1.48 \mathrm{E}+09$ | $1.48 \mathrm{E}+09$ |
| 177 | 2nd | 3rd | H2 | 9 | $2.76 \mathrm{E}+07$ | $2.76 \mathrm{E}+07$ | $2.76 \mathrm{E}+07$ | 8.08E+08 | $1.00 \mathrm{E}+09$ | $1.23 E+09$ | $9.01 \mathrm{E}+08$ | $1.59 \mathrm{E}+09$ | $3.02 \mathrm{E}+09$ | $3.02 \mathrm{E}+09$ | $3.02 \mathrm{E}+09$ |
| 177 | 2nd | 3rd | H3 | 7 | $1.83 \mathrm{E}+08$ | $1.83 \mathrm{E}+08$ | $1.83 \mathrm{E}+08$ | $2.27 \mathrm{E}+08$ | $2.45 \mathrm{E}+08$ | $2.87 \mathrm{E}+08$ | $1.10 \mathrm{E}+08$ | $3.36 \mathrm{E}+08$ | $4.87 \mathrm{E}+08$ | 4.87E+08 | $4.87 \mathrm{E}+08$ |
| 177 | Last | 3rd | H1 | 10 | $2.15 \mathrm{E}+08$ | $2.15 \mathrm{E}+08$ | $2.15 \mathrm{E}+08$ | $4.82 \mathrm{E}+08$ | 8.89E+08 | $1.41 \mathrm{E}+09$ | $1.36 \mathrm{E}+09$ | $2.14 \mathrm{E}+09$ | $3.71 \mathrm{E}+09$ | $3.71 \mathrm{E}+09$ | $3.71 \mathrm{E}+09$ |
| 177 | Last | 3rd | H2 | 9 | $1.71 \mathrm{E}+08$ | $1.71 \mathrm{E}+08$ | $1.71 \mathrm{E}+08$ | $3.35 \mathrm{E}+08$ | $4.55 \mathrm{E}+08$ | 8.47E+08 | 8.94E+08 | $6.85 \mathrm{E}+08$ | $2.73 \mathrm{E}+09$ | $2.73 \mathrm{E}+09$ | $2.73 \mathrm{E}+09$ |
| 177 | Last | 3rd | H3 | 8 | $5.66 \mathrm{E}+07$ | $5.66 \mathrm{E}+07$ | $5.66 \mathrm{E}+07$ | $6.92 \mathrm{E}+07$ | $1.28 \mathrm{E}+08$ | $2.51 \mathrm{E}+08$ | $2.16 \mathrm{E}+08$ | $4.39 \mathrm{E}+08$ | $5.58 \mathrm{E}+08$ | $5.58 \mathrm{E}+08$ | $5.58 \mathrm{E}+08$ |
| 174 | 1st | 3rd | H1 | 17 | $5.65 \mathrm{E}+08$ | $5.65 \mathrm{E}+08$ | $5.73 \mathrm{E}+08$ | $6.61 \mathrm{E}+08$ | $1.18 \mathrm{E}+09$ | $1.13 \mathrm{E}+09$ | $4.08 \mathrm{E}+08$ | $1.53 \mathrm{E}+09$ | $1.61 \mathrm{E}+09$ | $1.64 \mathrm{E}+09$ | $1.64 \mathrm{E}+09$ |
| 174 | 1st | 3rd | H2 | 17 | $4.36 \mathrm{E}+08$ | $4.36 \mathrm{E}+08$ | $4.36 \mathrm{E}+08$ | $5.53 \mathrm{E}+08$ | $6.18 \mathrm{E}+08$ | $6.22 \mathrm{E}+08$ | $1.37 \mathrm{E}+08$ | $7.08 \mathrm{E}+08$ | $8.29 \mathrm{E}+08$ | $8.29 \mathrm{E}+08$ | $8.29 \mathrm{E}+08$ |
| 174 | 1st | 3rd | H3 | 16 | 7.80E+07 | $7.80 \mathrm{E}+07$ | $7.80 \mathrm{E}+07$ | $1.33 \mathrm{E}+08$ | $1.51 \mathrm{E}+08$ | $1.47 \mathrm{E}+08$ | $3.56 \mathrm{E}+07$ | $1.70 \mathrm{E}+08$ | $1.90 \mathrm{E}+08$ | $1.90 \mathrm{E}+08$ | $1.90 \mathrm{E}+08$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Impacts } \end{gathered}$ | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | $95^{\text {th }}$ | Maximum |
| 174 | 2nd | 3rd |  | H1 | 18 | $2.71 \mathrm{E}+07$ | $2.71 \mathrm{E}+07$ | $1.95 \mathrm{E}+08$ | $1.30 \mathrm{E}+09$ | $1.54 \mathrm{E}+09$ | $1.79 \mathrm{E}+09$ | 1.09E+09 | $1.87 \mathrm{E}+09$ | 3.13E+09 | 4.65E+09 | $4.65 \mathrm{E}+09$ |
| 174 | 2nd | 3rd | H2 | 18 | $2.82 \mathrm{E}+08$ | $2.82 \mathrm{E}+08$ | $1.10 \mathrm{E}+09$ | $1.61 \mathrm{E}+09$ | $2.18 \mathrm{E}+09$ | $2.22 \mathrm{E}+09$ | $1.06 \mathrm{E}+09$ | $2.60 \mathrm{E}+09$ | 3.15E+09 | 5.32E+09 | $5.32 \mathrm{E}+09$ |
| 174 | 2nd | 3rd | H3 | 17 | $1.69 \mathrm{E}+08$ | $1.69 \mathrm{E}+08$ | $2.77 \mathrm{E}+08$ | $3.40 \mathrm{E}+08$ | $4.21 \mathrm{E}+08$ | $4.63 \mathrm{E}+08$ | $1.93 \mathrm{E}+08$ | 5.48E+08 | $7.54 \mathrm{E}+08$ | 9.51E+08 | $9.51 \mathrm{E}+08$ |
| 174 | Last | 3 rd | H1 | 19 | $2.42 \mathrm{E}+08$ | $2.42 \mathrm{E}+08$ | 3.03E+08 | $5.53 \mathrm{E}+08$ | $6.97 \mathrm{E}+08$ | $6.85 \mathrm{E}+08$ | $2.55 \mathrm{E}+08$ | $7.65 \mathrm{E}+08$ | 1.17E+09 | $1.19 \mathrm{E}+09$ | $1.19 \mathrm{E}+09$ |
| 174 | Last | 3rd | H2 | 18 | $3.30 \mathrm{E}+08$ | $3.30 \mathrm{E}+08$ | $6.51 \mathrm{E}+08$ | $1.13 \mathrm{E}+09$ | $1.33 \mathrm{E}+09$ | $1.30 \mathrm{E}+09$ | $4.55 \mathrm{E}+08$ | $1.76 \mathrm{E}+09$ | $1.84 \mathrm{E}+09$ | $1.95 \mathrm{E}+09$ | $1.95 \mathrm{E}+09$ |
| 174 | Last | 3 rd | H3 | 17 | $7.78 \mathrm{E}+07$ | $7.78 \mathrm{E}+07$ | $9.14 \mathrm{E}+07$ | $1.34 \mathrm{E}+08$ | $1.78 \mathrm{E}+08$ | $1.95 \mathrm{E}+08$ | 8.82E+07 | $1.99 \mathrm{E}+08$ | $3.60 \mathrm{E}+08$ | $4.04 \mathrm{E}+08$ | $4.04 \mathrm{E}+08$ |
| 181 | 1st | 3rd | H1 | 16 | $6.19 \mathrm{E}+08$ | 6.19E+08 | $9.81 \mathrm{E}+08$ | $1.38 \mathrm{E}+09$ | $2.16 \mathrm{E}+09$ | $2.18 \mathrm{E}+09$ | $8.48 \mathrm{E}+08$ | $3.01 \mathrm{E}+09$ | $3.20 \mathrm{E}+09$ | $3.24 \mathrm{E}+09$ | $3.24 \mathrm{E}+09$ |
| 181 | 1st | 3rd | H2 | 15 | $3.08 \mathrm{E}+08$ | $3.08 \mathrm{E}+08$ | $2.04 \mathrm{E}+09$ | $2.34 \mathrm{E}+09$ | $2.86 \mathrm{E}+09$ | $2.83 \mathrm{E}+09$ | 8.98E+08 | $3.50 \mathrm{E}+09$ | $3.72 \mathrm{E}+09$ | $4.48 \mathrm{E}+09$ | $4.48 \mathrm{E}+09$ |
| 181 | 1st | 3rd | H3 | 14 | $1.62 \mathrm{E}+08$ | $1.62 \mathrm{E}+08$ | $1.75 \mathrm{E}+08$ | $2.54 \mathrm{E}+08$ | $3.21 \mathrm{E}+08$ | $3.53 \mathrm{E}+08$ | $1.37 \mathrm{E}+08$ | $4.48 \mathrm{E}+08$ | 6.00E+08 | 6.18E+08 | $6.18 \mathrm{E}+08$ |
| 181 | 2nd | 3rd | H1 | 16 | $1.73 \mathrm{E}+07$ | $1.73 \mathrm{E}+07$ | $1.45 \mathrm{E}+08$ | $5.55 \mathrm{E}+08$ | $1.82 \mathrm{E}+09$ | $1.87 \mathrm{E}+09$ | $1.42 \mathrm{E}+09$ | $2.93 \mathrm{E}+09$ | $3.80 \mathrm{E}+09$ | $4.75 \mathrm{E}+09$ | $4.75 \mathrm{E}+09$ |
| 181 | 2nd | 3rd | H2 | 16 | $1.43 \mathrm{E}+08$ | $1.43 \mathrm{E}+08$ | $1.44 \mathrm{E}+08$ | $4.12 \mathrm{E}+08$ | $1.07 \mathrm{E}+09$ | $1.09 \mathrm{E}+09$ | 7.61E+08 | $1.85 \mathrm{E}+09$ | $2.18 \mathrm{E}+09$ | $2.22 \mathrm{E}+09$ | $2.22 \mathrm{E}+09$ |
| 181 | 2nd | 3rd | H3 | 15 | $6.33 \mathrm{E}+06$ | $6.33 \mathrm{E}+06$ | $6.06 \mathrm{E}+07$ | $1.27 \mathrm{E}+08$ | $3.72 \mathrm{E}+08$ | $3.31 \mathrm{E}+08$ | $2.00 \mathrm{E}+08$ | 5.13E+08 | 5.33E+08 | 5.59E+08 | $5.59 \mathrm{E}+08$ |
| 181 | Last | 3rd | H1 | 17 | $3.02 \mathrm{E}+08$ | $3.02 \mathrm{E}+08$ | 8.67E+08 | $1.16 \mathrm{E}+09$ | $1.70 \mathrm{E}+09$ | $1.52 \mathrm{E}+09$ | $5.27 \mathrm{E}+08$ | $1.90 \mathrm{E}+09$ | $2.11 \mathrm{E}+09$ | $2.15 \mathrm{E}+09$ | $2.15 \mathrm{E}+09$ |
| 181 | Last | 3rd | H2 | 16 | $4.23 \mathrm{E}+08$ | $4.23 \mathrm{E}+08$ | $4.45 \mathrm{E}+08$ | $5.78 \mathrm{E}+08$ | 8.07E+08 | $7.69 \mathrm{E}+08$ | $1.97 \mathrm{E}+08$ | $9.02 \mathrm{E}+08$ | $1.00 \mathrm{E}+09$ | $1.06 \mathrm{E}+09$ | $1.06 \mathrm{E}+09$ |
| 181 | Last | 3rd | H3 | 16 | $1.11 \mathrm{E}+08$ | $1.11 \mathrm{E}+08$ | $1.23 \mathrm{E}+08$ | $1.40 \mathrm{E}+08$ | $2.09 \mathrm{E}+08$ | $1.92 \mathrm{E}+08$ | $4.91 \mathrm{E}+07$ | $2.37 \mathrm{E}+08$ | $2.44 \mathrm{E}+08$ | $2.50 \mathrm{E}+08$ | $2.50 \mathrm{E}+08$ |
| 167 | 1st | 3rd | H1 | 33 | $6.97 \mathrm{E}+08$ | $6.97 \mathrm{E}+08$ | $2.31 \mathrm{E}+09$ | $3.29 \mathrm{E}+09$ | $4.19 \mathrm{E}+09$ | $3.88 \mathrm{E}+09$ | $1.26 \mathrm{E}+09$ | $4.56 \mathrm{E}+09$ | 5.26E+09 | $5.40 \mathrm{E}+09$ | $5.40 \mathrm{E}+09$ |
| 167 | 1st | 3rd | H2 | 32 | $1.97 \mathrm{E}+08$ | $1.97 \mathrm{E}+08$ | $1.14 \mathrm{E}+09$ | $1.60 \mathrm{E}+09$ | $1.81 \mathrm{E}+09$ | $1.67 \mathrm{E}+09$ | $4.87 \mathrm{E}+08$ | $1.91 \mathrm{E}+09$ | $2.10 \mathrm{E}+09$ | $2.15 \mathrm{E}+09$ | $2.15 \mathrm{E}+09$ |
| 167 | 1st | 3rd | H3 | 21 | $2.78 \mathrm{E}+08$ | $2.78 \mathrm{E}+08$ | $2.93 \mathrm{E}+08$ | $4.19 \mathrm{E}+08$ | $5.20 \mathrm{E}+08$ | $4.93 \mathrm{E}+08$ | $1.23 \mathrm{E}+08$ | $5.64 \mathrm{E}+08$ | $6.51 \mathrm{E}+08$ | 6.55E+08 | $6.55 \mathrm{E}+08$ |
| 167 | 2nd | 3rd | H1 | 34 | $1.07 \mathrm{E}+08$ | $4.93 \mathrm{E}+08$ | $6.93 \mathrm{E}+08$ | $1.09 \mathrm{E}+09$ | $4.40 \mathrm{E}+09$ | $6.70 \mathrm{E}+09$ | $6.57 \mathrm{E}+09$ | $1.04 \mathrm{E}+10$ | $1.83 \mathrm{E}+10$ | $1.96 \mathrm{E}+10$ | $2.17 \mathrm{E}+10$ |
| 167 | 2nd | 3rd | H2 | 33 | $1.46 \mathrm{E}+08$ | $1.81 \mathrm{E}+08$ | $1.95 \mathrm{E}+08$ | $3.82 \mathrm{E}+08$ | $1.23 \mathrm{E}+09$ | $1.93 \mathrm{E}+09$ | $1.90 \mathrm{E}+09$ | $2.98 \mathrm{E}+09$ | 5.15E+09 | 6.03E+09 | $6.39 \mathrm{E}+09$ |
| 167 | 2nd | 3rd | H3 | 22 | $2.56 \mathrm{E}+07$ | $6.49 \mathrm{E}+07$ | 7.66E+07 | $1.26 \mathrm{E}+08$ | $2.60 \mathrm{E}+08$ | $1.71 \mathrm{E}+09$ | 5.93E+09 | $4.65 \mathrm{E}+08$ | 9.29E+08 | $2.79 \mathrm{E}+09$ | $2.75 \mathrm{E}+10$ |
| 167 | Last | 3rd | H1 | 35 | $2.19 \mathrm{E}+09$ | $2.64 \mathrm{E}+09$ | 3.27E+09 | $3.92 \mathrm{E}+09$ | $4.85 \mathrm{E}+09$ | $5.13 \mathrm{E}+09$ | $2.07 \mathrm{E}+09$ | 5.82E+09 | $7.56 \mathrm{E}+09$ | 7.77E+09 | $1.38 \mathrm{E}+10$ |
| 167 | Last | 3rd | H2 | 34 | $3.27 \mathrm{E}+08$ | $4.00 \mathrm{E}+08$ | 5.09E+08 | $5.94 \mathrm{E}+08$ | $7.16 \mathrm{E}+08$ | $7.95 \mathrm{E}+08$ | $3.34 \mathrm{E}+08$ | $9.11 \mathrm{E}+08$ | $1.13 \mathrm{E}+09$ | $1.33 \mathrm{E}+09$ | $2.16 \mathrm{E}+09$ |
| 167 | Last | 3 rd | H3 | 23 | $4.32 \mathrm{E}+07$ | $6.58 \mathrm{E}+07$ | 8.27E+07 | $1.24 \mathrm{E}+08$ | $1.50 \mathrm{E}+08$ | $1.43 \mathrm{E}+08$ | $4.51 \mathrm{E}+07$ | $1.71 \mathrm{E}+08$ | $1.94 \mathrm{E}+08$ | 2.04E+08 | $2.28 \mathrm{E}+08$ |
| 178 | 1st | 3rd | H1 | 17 | $3.97 \mathrm{E}+09$ | $4.02 \mathrm{E}+09$ | 4.17E+09 | $4.74 \mathrm{E}+09$ | $5.86 \mathrm{E}+09$ | 5.77E+09 | $1.17 \mathrm{E}+09$ | $6.57 \mathrm{E}+09$ | $7.66 \mathrm{E}+09$ | $7.70 \mathrm{E}+09$ | 8.13E+09 |
| 178 | 1st | 3rd | H2 | 17 | $5.24 \mathrm{E}+08$ | $6.06 \mathrm{E}+08$ | $6.54 \mathrm{E}+08$ | $7.56 \mathrm{E}+08$ | $8.98 \mathrm{E}+08$ | $8.75 \mathrm{E}+08$ | $1.69 \mathrm{E}+08$ | $9.94 \mathrm{E}+08$ | $1.09 \mathrm{E}+09$ | $1.11 \mathrm{E}+09$ | $1.24 \mathrm{E}+09$ |
| 178 | 1st | 3 rd | H3 | 16 | $8.58 \mathrm{E}+07$ | $9.56 \mathrm{E}+07$ | $1.12 \mathrm{E}+08$ | $1.36 \mathrm{E}+08$ | $1.51 \mathrm{E}+08$ | $1.56 \mathrm{E}+08$ | $3.77 \mathrm{E}+07$ | $1.84 \mathrm{E}+08$ | $2.00 \mathrm{E}+08$ | $2.25 \mathrm{E}+08$ | $2.26 \mathrm{E}+08$ |
| 178 | 2nd | 3rd | H1 | 18 | $5.50 \mathrm{E}+07$ | 5.50E+07 | $9.77 \mathrm{E}+07$ | $6.39 \mathrm{E}+08$ | $1.91 \mathrm{E}+09$ | $4.20 \mathrm{E}+09$ | $4.42 \mathrm{E}+09$ | 8.05E+09 | 9.54E+09 | $1.38 \mathrm{E}+10$ | $1.38 \mathrm{E}+10$ |
| 178 | 2nd | 3 rd | H2 | 17 | $1.87 \mathrm{E}+07$ | $1.87 \mathrm{E}+07$ | $1.58 \mathrm{E}+08$ | $8.66 \mathrm{E}+08$ | $1.70 \mathrm{E}+09$ | $3.58 \mathrm{E}+09$ | $3.44 \mathrm{E}+09$ | 7.40E+09 | $8.01 \mathrm{E}+09$ | 9.65E+09 | 9.65E+09 |
| 178 | 2nd | 3rd | H3 | 17 | $3.97 \mathrm{E}+07$ | $3.97 \mathrm{E}+07$ | $1.12 \mathrm{E}+08$ | $2.96 \mathrm{E}+08$ | $3.79 \mathrm{E}+08$ | $6.55 \mathrm{E}+08$ | $4.93 \mathrm{E}+08$ | 1.15E+09 | $1.25 \mathrm{E}+09$ | $1.60 \mathrm{E}+09$ | $1.60 \mathrm{E}+09$ |

Table B.6. (continued)

| Pile ID | Impact Time Series |  | Hydrophone | Numberof Impacts | Sound Exposure Level ( $\mathrm{Pa}^{2}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Minimum |  | $5^{\text {th }}$ | $10^{\text {th }}$ | $25^{\text {th }}$ | $\begin{gathered} 50^{\text {th }} \\ \text { (Median) } \end{gathered}$ | Average | st dev | $75^{\text {th }}$ | $90^{\text {th }}$ | 95 ${ }^{\text {th }}$ | Maximum |
| 178 | Last | 3rd |  | H1 | 18 | $1.62 \mathrm{E}+09$ | $1.62 \mathrm{E}+09$ | $1.86 \mathrm{E}+09$ | 4.80E+09 | $5.93 \mathrm{E}+09$ | 5.50E+09 | $2.00 \mathrm{E}+09$ | $7.30 \mathrm{E}+09$ | $7.59 \mathrm{E}+09$ | 7.77E+09 | 7.77E+09 |
| 178 | Last | 3rd | H2 | 18 | $1.80 \mathrm{E}+09$ | $1.80 \mathrm{E}+09$ | $2.44 \mathrm{E}+09$ | 6.64E+09 | $9.29 \mathrm{E}+09$ | $7.87 \mathrm{E}+09$ | $3.25 \mathrm{E}+09$ | $1.06 \mathrm{E}+10$ | $1.11 \mathrm{E}+10$ | $1.11 \mathrm{E}+10$ | $1.11 \mathrm{E}+10$ |
| 178 | Last | 3rd | H3 | 17 | $5.26 \mathrm{E}+08$ | $5.26 \mathrm{E}+08$ | $6.02 \mathrm{E}+08$ | $1.00 \mathrm{E}+09$ | $1.11 \mathrm{E}+09$ | 1.05E+09 | $2.17 \mathrm{E}+08$ | $1.19 \mathrm{E}+09$ | $1.27 \mathrm{E}+09$ | $1.31 \mathrm{E}+09$ | $1.31 \mathrm{E}+09$ |
| 244 | 1st | 3 rd | H1 | 17 | $6.46 \mathrm{E}+09$ | $6.46 \mathrm{E}+09$ | $6.47 \mathrm{E}+09$ | 6.95E+09 | $7.16 \mathrm{E}+09$ | $7.24 \mathrm{E}+09$ | $4.81 \mathrm{E}+08$ | 7.69E+09 | 7.80E+09 | 8.21E+09 | $8.21 \mathrm{E}+09$ |
| 244 | 1st | 3rd | H2 | 16 | $8.97 \mathrm{E}+09$ | 8.97E+09 | 9.69E+09 | $1.05 \mathrm{E}+10$ | $1.10 \mathrm{E}+10$ | $1.10 \mathrm{E}+10$ | 9.10E+08 | $1.15 \mathrm{E}+10$ | $1.21 \mathrm{E}+10$ | $1.28 \mathrm{E}+10$ | $1.28 \mathrm{E}+10$ |
| 244 | 1st | 3rd | H3 | 16 | $7.00 \mathrm{E}+08$ | $7.00 \mathrm{E}+08$ | $8.23 \mathrm{E}+08$ | $9.65 \mathrm{E}+08$ | $1.04 \mathrm{E}+09$ | $1.09 \mathrm{E}+09$ | $2.16 \mathrm{E}+08$ | $1.26 \mathrm{E}+09$ | $1.40 \mathrm{E}+09$ | $1.41 \mathrm{E}+09$ | $1.41 \mathrm{E}+09$ |
| 244 | 2nd | 3rd | H1 | 18 | $2.37 \mathrm{E}+07$ | $2.37 \mathrm{E}+07$ | $2.50 \mathrm{E}+07$ | 1.13E+09 | $4.24 \mathrm{E}+09$ | 3.83E+09 | $2.80 \mathrm{E}+09$ | $4.86 \mathrm{E}+09$ | 7.93E+09 | 9.07E+09 | 9.07E+09 |
| 244 | 2nd | 3rd | H2 | 17 | $6.06 \mathrm{E}+07$ | $6.06 \mathrm{E}+07$ | $7.54 \mathrm{E}+08$ | $1.66 \mathrm{E}+09$ | $1.92 \mathrm{E}+09$ | $2.47 \mathrm{E}+09$ | $1.80 \mathrm{E}+09$ | $2.77 \mathrm{E}+09$ | 5.64E+09 | $7.01 \mathrm{E}+09$ | $7.01 \mathrm{E}+09$ |
| 244 | 2nd | 3 rd | H3 | 16 | $2.26 \mathrm{E}+08$ | $2.26 \mathrm{E}+08$ | $3.08 \mathrm{E}+08$ | 7.67E+08 | $9.12 \mathrm{E}+08$ | $1.09 \mathrm{E}+09$ | $6.36 \mathrm{E}+08$ | $1.29 \mathrm{E}+09$ | 1.99E+09 | $2.76 \mathrm{E}+09$ | $2.76 \mathrm{E}+09$ |
| 244 | Last | 3rd | H1 | 19 | $2.07 \mathrm{E}+08$ | $2.07 \mathrm{E}+08$ | $7.92 \mathrm{E}+08$ | $1.56 \mathrm{E}+09$ | $1.97 \mathrm{E}+09$ | $2.98 \mathrm{E}+09$ | $3.16 \mathrm{E}+09$ | $2.52 \mathrm{E}+09$ | $1.07 \mathrm{E}+10$ | $1.21 \mathrm{E}+10$ | $1.21 \mathrm{E}+10$ |
| 244 | Last | 3rd | H2 | 18 | $2.05 \mathrm{E}+08$ | $2.05 \mathrm{E}+08$ | $4.89 \mathrm{E}+08$ | 1.05E+09 | $1.21 \mathrm{E}+09$ | $1.56 \mathrm{E}+09$ | $1.43 \mathrm{E}+09$ | $1.55 \mathrm{E}+09$ | $2.28 \mathrm{E}+09$ | 6.80E+09 | $6.80 \mathrm{E}+09$ |
| 244 | Last | 3rd | H3 | 17 | $1.34 \mathrm{E}+08$ | $1.34 \mathrm{E}+08$ | $3.14 \mathrm{E}+08$ | 3.63E+08 | $4.35 \mathrm{E}+08$ | $5.65 \mathrm{E}+08$ | $5.55 \mathrm{E}+08$ | $5.02 \mathrm{E}+08$ | 8.15E+08 | $2.58 \mathrm{E}+09$ | $2.58 \mathrm{E}+09$ |

## APPENDIX C

## Plots Showing Root Mean Square Pressure, Peak Positive Pressure, and Peak Negative Pressure at Each Sampled Impact for Each Pile



Figure C.1. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact at Plumb Pile 121N Driven in 42 ft Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.2. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact at Plumb Pile 52N Driven in 40 ft Water with Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


ZO= 3 PILE = 118N SERIES = 2nd 3rd Channel = 1


EVENT






ZO $=3$ PILE $=118 \mathrm{~N}$ SERIES $=$ Last 3rd Channel $=3$


Figure C.3. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact at Plumb Pile 118N Driven in 39 ft of Water with Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.4. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact at Plumb Pile 255 Driven in 33 ft of Water with Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).










Figure C.5. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 249 Driven at Hood Canal Bridge in 32 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


ZO=6 PILE $=252$ SERIES $=$ 2nd 3rd Channel $=1$



ZO $=6$ PILE $=252$ SERIES $=$ Last 3rd Channel $=1$








Figure C.6. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 252 Driven at Hood Canal Bridge in 31 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).










Figure C.7. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 172 Driven at Hood Canal Bridge in 20 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


ZO=8 PILE $=171$ SERIES = 2nd 3rd Channel $=1$










Figure C.8. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 171 Driven at Hood Canal Bridge in 18 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).









Figure C.9. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 238 Driven at Hood Canal Bridge in 7 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.10. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 235 Driven at Hood Canal Bridge in 4.5 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).







Figure C.11. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 237 Driven at Hood Canal Bridge in 4 ft of Water with a Type II Confined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


ZO=12 PILE $=50 \mathrm{~N}$ SERIES $=$ 2nd 3rd Channel $=1$




ZO $=12$ PILE $=50 \mathrm{~N}$ SERIES $=2$ nd 3rd Channel $=2$


ZO $=12$ PILE $=50 \mathrm{~N}$ SERIES $=$ Last 3rd Channel $=2$




ZO $=12$ PILE $=50 \mathrm{~N}$ SERIES $=$ Last 3rd Channel $=3$


Figure C.12. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 50N Driven at Hood Canal Bridge in 40 ft of Water with No Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.13. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 120N Driven at Hood Canal Bridge in 39 ft of Water with No Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


ZO= 14 PILE $=240$ SERIES $=$ 2nd 3rd Channel $=1$

$$
20,000 \text { \#eas Peak (Pa) Peak (Pa) } \cdots \text { RMS (Pa) }
$$





ZO= 14 PILE $=240$ SERIES $=2$ nd 3rd Channel $=2$







Figure C.14. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Plumb Pile 240 Driven at Hood Canal Bridge in 9 ft of Water with No Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.15. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 182 Driven at Hood Canal Bridge in 41 ft of Water with a Type I Unconfined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.16. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 177 Driven at Hood Canal Bridge in 37 ft of Water with a Type I Unconfined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.17. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 174 Driven at Hood Canal Bridge in 29 ft of Water with a Type I Unconfined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.18. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 181 Driven at Hood Canal Bridge in 33 ft of Water with a Type I Unconfined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.19, Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 167 Driven at Hood Canal Bridge in 7 ft of Water with a Type I Unconfined Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.20. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 178 Driven at Hood Canal Bridge in 37 ft of Water with No Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).


Figure C.21. Peak Positive, Peak Negative, and Root Mean Square Sound Pressure (Pa) of Each Impact on Batter Pile 244 Driven at Hood Canal Bridge in 20 ft of Water with No Bubble Curtain in Place. Plots are arranged by hydrophone H1 (left) to H3 (right) and by impact series, each containing one third of the impacts, from first third (top) to last third (bottom).

## APPENDIX D

## Distribution Plots of Root Mean Square

 Pressure, Peak Positive Pressure, and Peak Negative Pressure for Each Pile-Driving Event
(first third, second third, and last third of impacts). The variable ZO was used to sort the piles in order
of decreasing wetted length of the pile and to separate batter from plumb piles. Note: In the following figures, subplots are arranged in rows by pile and columns by increasing
hydrophone channel. Within subplots, histograms are arranged from top to bottom by impact series
Figure D.1. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Plumb Piles 121N, 52N, and 118 N at the Hood Canal Bridge in $42 \mathrm{ft}, 40 \mathrm{ft}$, and 39 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.2. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Plumb Piles 255, 249, and 252 at the Hood Canal Bridge in $33 \mathrm{ft}, 32 \mathrm{ft}$, and 31 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place










Figure D.3. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Plumb Piles 172, 171, and 238 at the Hood Canal Bridge in $20 \mathrm{ft}, 18 \mathrm{ft}$, and 7 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.4. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Plumb Piles 235 and 237 in 4.5 ft and 4 ft of Water, Respectively, with a Type II Confined Bubble Curtain in Place, and at Plumb Pile 50N in 40 ft of Water with No Bubble Curtain in Place


Figure D.5. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Plumb Piles 120 N and 240 in 39 ft and 9 ft of Water, Respectively, with No Bubble Curtain in Place, and on Batter Pile 182 in 41 ft of Water with No Bubble Curtain in Place


Figure D.6. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Batter Piles 177, 174, and 181 at the Hood Canal Bridge in $37 \mathrm{ft}, 29 \mathrm{ft}$, and 33 ft of Water, Respectively, with Type I Unconfined Bubble Curtain in Place


Figure D.7. Plots of Distribution Statistics on Root Mean Square Pressure for Impacts on Batter Piles 167, 178, and 244 at the Hood Canal Bridge. Batter pile 167 is in 7 ft of water with a Type I unconfined bubble curtain in place; batter piles 178 and 244 are in 37 ft and 20 ft of water, respectively, with no bubble curtains in place.


Figure D.8. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Plumb Piles 121N, 52N, and 118N at the Hood Canal Bridge in $42 \mathrm{ft}, 40 \mathrm{ft}$, and 39 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.9. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Plumb Piles 255, 249, and 252 at the Hood Canal Bridge in $33 \mathrm{ft}, 32$, ft , and 31 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.10. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Plumb Piles 172, 171, and 238 at the Hood Canal Bridge in $20 \mathrm{ft}, 18 \mathrm{ft}$, and 7 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.11. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Plumb Piles 235 and 237 in 4.5 ft and 4 ft of Water, Respectively, with a Type II Confined Bubble Curtain in Place, and at Plumb Pile 50N in 40 ft of Water with No Bubble Curtain in Place


Figure D.12. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Plumb Piles 120 N and 240 in 39 ft and 9 ft of Water, Respectively, with No Bubble Curtain in Place, and on Batter Pile 182 in 41 ft of Water with No Bubble Curtain in Place


Figure D.13. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Batter Piles 177, 174, and 181 at the Hood Canal Bridge in $37 \mathrm{ft}, 29 \mathrm{ft}$, and 33 ft of Water, Respectively, with Type I Unconfined Bubble Curtain in Place


Figure D.14. Plots of Distribution Statistics on Peak Positive Pressure for Impacts on Piles Batter Piles 167, 178, and 244 at the Hood Canal Bridge. Batter pile 167 is in 7 ft of water with a Type I unconfined bubble curtain in place; batter piles 178 and 244 are in 37 ft and 20 ft of water, respectively, with no bubble curtains in place.


Figure D.15. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Plumb Piles 121N, 52N, and 118N at the Hood Canal Bridge in $42 \mathrm{ft}, 40 \mathrm{ft}$, and 39 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.16. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Plumb Piles 255, 249, and 252 at the Hood Canal Bridge in $33 \mathrm{ft}, 32 \mathrm{ft}$, and 31 ft of Water, Respectively, with Type II Confined Bubble Curtain in Place


Figure D.17. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Plumb Piles 172, 171, and 238 at the Hood Canal Bridge in $20 \mathrm{ft}, 18 \mathrm{ft}$, and 7 ft of Water, Respectively, with a Type II Confined Bubble Curtain in Place


Figure D.18. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Plumb Piles 235 and 237 in 4.5 ft and 4 ft of Water, Respectively, with a Type II Confined Bubble Curtain in Place, and at Plumb Pile 50N in 40 ft of Water with No Bubble Curtain in Place


Figure D.19. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Plumb Piles 120 N and 240 in 39 ft and 9 ft of Water, Respectively, with No Bubble Curtain in Place, and on Batter Pile 182 in 41 ft of Water with No Bubble Curtain in Place


Figure D.20. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Batter Piles 177, 174, and 181 at the Hood Canal Bridge in $37 \mathrm{ft}, 29 \mathrm{ft}$, and 33 ft of Water, Respectively, with Type I Unconfined Bubble Curtain in Place


Figure D.21. Plots of Distribution Statistics on Peak Negative Pressure for Impacts on Batter Piles 167, 178, and 244 at the Hood Canal Bridge. Batter pile 167 is in 7 ft of water with a Type I unconfined bubble curtain in place; batter piles 178 and 244 are in 37 ft and 20 ft of water, respectively, with no bubble curtains in place.

## APPENDIX E

## Plots of Spectral Density (Sound Energy) at Each Hydrophone for Each Pile



Figure E.1. Spectral Density $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ Versus Frequency (Hz) at Hydrophones H 1 (left), H 2 (center), and H 3 (right) for the First 20 Impacts on Piles $121 \mathrm{~N}, 52 \mathrm{~N}$, and 118 N (all plumb piles driven with Type II confined bubble curtain in place)


Figure E.2. Spectral Density $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ Versus Frequency (Hz) at Hydrophones H1 (left), H2 (center), and H 3 (right) for the First 20 Impacts on Piles 255, 249, and 252 (all plumb piles driven with Type II confined bubble curtain in place)


Figure E.3. Spectral Density $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ Versus Frequency (Hz) at Hydrophones H1 (left), H2 (center), and H 3 (right) for the First 20 Impacts on Piles 172, 171, and 238 (all plumb piles driven with Type II confined bubble curtain in place)


Figure E.4. Spectral Density ( $\mathrm{Pa}^{2} / \mathrm{Hz}$ ) Versus Frequency (Hz) at Hydrophones H1 (left), H2 (center), and H3 (right) for the First 20 Impacts on Piles 235, 237 (plumb piles driven with Type II confined bubble curtain in place) , and 50 N (plumb pile driven without bubble curtain)


Figure E.5. Spectral Density $\left(\mathrm{Pa}^{2} / \mathrm{Hz}\right)$ versus Frequency ( Hz ) at Hydrophones H 1 (left), H 2 (center), and H 3 (right) for the First 20 Impacts on Piles 120N, 240 (plumb piles driven without bubble curtain in place), and 182 (batter pile driven with Type I unconfined bubble curtain)


Figure E.6. Spectral Density ( $\mathrm{Pa}^{2} / \mathrm{Hz}$ ) versus Frequency ( Hz ) at Hydrophones H 1 (left), H 2 (center), and H 3 (right) for the First 20 Impacts on Piles 177, 174, and 181 (all batter piles driven with Type I unconfined bubble curtain in place)


Figure E.7. Spectral Density ( $\mathrm{Pa}^{2} / \mathrm{Hz}$ ) versus Frequency (Hz) at Hydrophones H1 (left), H2 (center), and H3 (right) for the First 20 Impacts on Piles 167 (batter pile driven with Type I unconfined bubble curtain in place), and 178 and 244 (batter piles driven without bubble curtain)

## APPENDIX F

## Bubble Curtain Design and Specification Information

## Bubble Curtain Type II

The B ubble curtain w illbe m ade out of an HD PE pipe sleeve that fils over the 24 " pile and reaches from a pointabove $w$ ater to the ground elevation below w ater. S leeve diam eter is to be determ ined based on inform ation from Dr. John Stadler. Curentthinking is around 34" OD +-. W all thickness is approxim ately $13 / 8^{\prime \prime}$. The H D PE sleeve w ill have a bubbler ring attached to the interiorw all at the bottom . The bubbler ring w illhave 2 row s of $1 / 16^{\prime \prime}$ diam eterholes spaced at $1 \frac{1}{2}$ " center to centerper the perforation detail on SheetG 21. This w illbe a steeltubular ring $w$ ith an airsupply filting. The ring w illhave a steelpipe section w elded on the bottom to notonly provide w eightbutallow for som e penetration into the subsoil. The H D PE sleeve w ill have centralizer spacers to hold a consistent space forbubble transfer around the pile. The diam eter of this Sleeve w illenable the rem oval up through the trestle installation tem plate.

## Equipment List

1. 1000 cfm at 150 psioil free com pressor or larger
2. $50^{\prime}$ of $3^{\prime \prime}$ diam eter pneum atic hose
3. $200^{\prime}$ of $2^{\prime \prime}$ diam eterpneum atic hose
4. Prim ary $m$ anifold system, including valves, flow $m$ eters and pressure gauges
5. Bubbler ring $w$ th appropriate hole sizes and spacings
6. $\sim 20^{\prime}$ of $34^{\prime \prime}$ diam eterH D PE ( $1^{3 / 8 \prime}$ " w allthickness)
7. 2 or 3 sets of spacers/centralizers
8. Seating ring

## Air Pressure and Flow Requirements

Each bubbler ring requires approxim ately 320 scfm @ 100 psi. The com pressorw ill deliver 1000 scfm @ 150 cm . A irflow from the com pressor to the ring assem bliesm ustnotbe restricted so as to reduce the flow orpressure below required am ount. The follow ing is a com pilation of the restrictions from the com pressor to one ring using 1000 cfm from the com pressor to the manifold and 400 cfm from the $m$ anifold to the ring assem bly .

| Item | PSI Drop |
| :--- | :--- |
|  |  |
| $50^{\prime} 3^{\prime \prime}$ hose | 0.265 |
| $2.5^{\prime \prime} \mathrm{G}$ ate V alve | 0.104 |
| Flow M eter | 5.6 |
| $100^{\prime} 2^{\prime \prime}$ hose | 0.68 |
| 40 w aterdepth (max) | 17.8 |
| TO TA L D ROP | 24.45 psiloss based on 400 scfm delivery to ring |
| $150-24.45=125.55$ | psi, w ellw ithin the param eters |

Figure F.1. C ontractor's Specifications forC onfined Bubble C urtain used on P lum b P iles

 Plumb Piles


Figure F.3. C ontractor's Side V iew D raw ing ofB ubble R ing forC onfined Bubble C urtain used on Plum b P iles


Figure F.4. Type IIC onfined Bubble C urtain S leeve Show ing A irSupply C onnection, Bubble R ing, M etalE xtension to C ontact Substrate


Figure F .5. Type IIC onfined B ubble C urtain Sleeve D eployed D uring D riving a P lum b P ile

## Hood Canal Bridge Battered Pipe Pile Bubble Curtain

## Equipment List

1. 1000 cfm at 150 psioil firee com pressor or larger
2. $50^{\prime}$ of $3^{\prime \prime}$ diam eter pneum atic hose
3. $200^{\prime}$ of $2^{\prime \prime}$ diam eterpneum atic hose
4. Prim ary $m$ anifold system, including valves, flow $m$ eters and pressure gauges
5. Secondary $m$ anifold rings
6. Linking hardw are betw een rings
7. M ultiple ring assem bly
8. Steel base plate
9. Guide rings atbottom . M ay add m ore atm id-point if necessary.

N ote: This attemative can have multiple layers ofbubblers as deem ed necessary.

## Air Pressure and Flow Requirements

Each bubbler ring requires approxin ately 320 scfin @ 100 psi . The com pressorw illdeliver $1000 \mathrm{scfn} @ 150 \mathrm{cfn}$. A ir flow from the com pressorto the ring assem bliesm ustnotbe restricted so as to reduce the flow orpressure below required am ount. The follow ing is a com pilation of the restrictions from the com pressor to one ring using 1000 cfm from the com pressor to the $m$ anifold and 400 cfm from the m anifold to the ring assem bly.

| Item | PSI Drop |
| :--- | :--- |
|  |  |
| $50^{\prime} 3^{\prime \prime}$ hose | 0.265 |
| $25^{\prime \prime} \mathrm{G}$ ate V alve | 0.104 |
| Flow M eter | 5.6 |
| $100^{\prime} 2^{\prime \prime}$ hose | 0.68 |
| 40 w aterdepth (m ax) | 17.8 |
| TO TA L D ROP | 24.45 psiloss based on 400 scfm delivery to ring |
| $150-24.45=125.55$ psi, w ellw thin the param eters |  |

## Operating Sequence for Battered Pile Bubble Curtain

System shallbe assem bled in such a w ay that there are no kinks or sharp bends in the hoses. The $3^{\prime \prime}$ hose shalllbe in line betw een the com pressor and the prim ary $m$ anifold. The 2 " hose shallbe installed betw een the prim ary $m$ anifold and bubbler rings.

The bubble curtain system w illbe picked up by a crane or overhead lifting device to low er ring assem bly to the m udline and retrieve w hen pile is driven. The airhoses w ill be placed either inside or ad jacent to the alignm ent tubing. Itw illbe set in place prior to the pile, and then the pile $w$ illbe threaded through itto $m$ udline and driven. C are w illlbe taken to ensure no dam age to assem bly during pile placem ent.

The bubblers w ill follow the details provided on sheet 22 of the contract draw ings, unless otherw ise noted. The holes in the bubblerw illbe $1 / 16^{\prime \prime}$ in diam eter and ettherhave 2 row $s$ at $1 \frac{1}{2}$ spacing or 1 row of $3 / 4$ " spacing.

O nce air has been supplied to the prim ary $m$ anifold, and ring assem bly is in place atm udline, air can be discharged to each bubbler individually and adjusted untiloptim um perform ance has been achieved. Rem ovalof the ring assem bly w illoccur after the pile has been driven to finaldepth. Since the rings do not fully encom pass the pile it can be sim ply pulled aw ay.

Figure F.6. C ontractor's Specifications for U nconfined Bubble C urtain U sed on B atterP iles


Figure F.7. C ontractor's S ide and Top V iew D raw ings of M ultiple BubblerU nconfined B ubble C urtain U sed on B atterP iles


Figure F 8. Type IU nconfined Bubble C urtain and B atterP ile, Pile and Bubble C urtain L ow ered into P lace, A irC onnection to B ubble R ings, and B atterP ile D riving w ith Bubble C urtain in P lace (hydrophone floatvisible at low er right)

